Skip to main content

Advertisement

Log in

The causal effect of inflammatory proteins and immune cell populations on diabetic nephropathy: evidence from Mendelian randomization

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Diabetic nephropathy (DN) is one of the diabetic microvascular complications with complex pathophysiology, and exploring the landscape of immune dysregulation in DN is valuable for pathogenesis and disease treatment. We crystallized possible inflammatory exposures into 91 circulating inflammatory proteins and 109 blood immune cells; and assessed the causal relationship between inflammation and DN using Mendelian randomization (MR).

Methods

Based on publicly available genetic data, we explored causal associations between inflammation and DN risk by two-sample MR analysis. Genome-wide association study (GWAS) summary statistics for 91 circulating inflammatory proteins, 109 immune cells absolute counts, and DN were acquired from the GWAS Catalog. Inverse Variance Weighted (IVW) was the main MR method, while MR-Egger and MR-pleiotropy residuals and outliers (MR-PRESSO) were utilized for sensitivity analysis. Cochrane’s Q was used to test for heterogeneity. The leave-one-out method ensured the stability of the MR results.

Results

This study revealed that higher levels of TNF-related activation-induced cytokine and tumor necrosis factor ligand superfamily member 14 were possibly associated with the increased risk of DN according to the IVW approach, with estimated odds ratios (OR) of 1.287 (95% confidence interval [CI] 1.051 to 1.577, P = 0.015) and 1.249 (95% CI 1.018 to 1.532, P = 0.033). Five immune cell traits were identified that might be linked to increased DN risk, including the higher absolute counts of HLA DR+ natural killer cell (OR = 1.248, 95% CI 1.055 to 1.476, P = 0.010), IgD+ CD38+ B cell (OR = 1.148, 95% CI 1.033 to 1.276, P = 0.010), CD25++ CD8+ T cell (OR = 1.159, 95% CI 1.032 to 1.302, P = 0.013), CD4 CD8 T cell (OR = 1.226, 95% CI 1.032 to 1.457, P = 0.020), and IgD CD38 B cell (OR = 1.182, 95% CI 1.009 to 1.386, P = 0.039). In addition, elevated levels of interleukin-1 alpha (OR = 0.712, 95% CI 0.514 to 0.984, P = 0.040) and unswitched memory B cell (OR = 0.797, 95% CI 0.651 to 0.974, P = 0.027) may reduce the risk of developing DN.

Conclusion

We identified inflammation-related exposures that may be associated with the risk of DN at the level of genetic prediction, which contributes to a better understanding of the etiologic of DN and facilitates the development of targeted therapies for DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The GWAS summary data used for these analyses are all publicly available in the online EBI GWAS Catalog.

References

  1. Wu Y, Xiong T, Tan X, Chen L (2022) Frailty and risk of microvascular complications in patients with type 2 diabetes: a population-based cohort study. BMC Med 20:473. https://doi.org/10.1186/s12916-022-02675-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zelnick LR, Weiss NS, Kestenbaum BR et al (2017) Diabetes and CKD in the United States Population, 2009–2014. Clin J Am Soc Nephrol 12:1984–1990. https://doi.org/10.2215/CJN.03700417

    Article  PubMed  PubMed Central  Google Scholar 

  3. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395:709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  4. Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L et al (2020) Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci 21:3798. https://doi.org/10.3390/ijms21113798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Wang L, Zhang J et al (2023) Integrated multi-omics and bioinformatic methods to reveal the mechanisms of sinomenine against diabetic nephropathy. BMC Complement Med Ther 23:287. https://doi.org/10.1186/s12906-023-04119-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohanraj N, Prasanth S, Rajapriya P et al (2023) Bisphenol a accelerates the vascular complications in patients with Type 2 diabetes mellitus through vascular calcification-a molecular approach. Int Arch Occup Environ Health 96:1291–1299. https://doi.org/10.1007/s00420-023-02007-1

    Article  CAS  PubMed  Google Scholar 

  7. AlTamimi JZ, AlFaris NA, Alshammari GM et al (2023) Protective effect of eriodictyol against hyperglycemia-induced diabetic nephropathy in rats entails antioxidant and anti-inflammatory effects mediated by activating Nrf2. Saudi Pharm J 31:101817. https://doi.org/10.1016/j.jsps.2023.101817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feigerlová E, Battaglia-Hsu S-F (2017) IL-6 signaling in diabetic nephropathy: from pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev 37:57–65. https://doi.org/10.1016/j.cytogfr.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  9. Zhu H-M, Liu N, Sun D-X, Luo L (2023) Machine-learning algorithm-based prediction of a diagnostic model based on oxidative stress-related genes involved in immune infiltration in diabetic nephropathy patients. Front Immunol 14:1202298. https://doi.org/10.3389/fimmu.2023.1202298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin J, Wang L, Liu Y et al (2022) Depiction of immune heterogeneity of peripheral blood from patients with type II diabetic nephropathy based on mass cytometry. Front Endocrinol (Lausanne) 13:1018608. https://doi.org/10.3389/fendo.2022.1018608

    Article  PubMed  Google Scholar 

  11. Barutta F, Bruno G, Grimaldi S, Gruden G (2015) Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 48:730–742. https://doi.org/10.1007/s12020-014-0437-1

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Gao Y, Yi W et al (2021) Inhibition of miRNA-155 alleviates high glucose-induced podocyte inflammation by targeting SIRT1 in diabetic mice. J Diabetes Res 2021:5597394. https://doi.org/10.1155/2021/5597394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng B, Lu Y, Ye L et al (2022) Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front Endocrinol (Lausanne) 13:1043174. https://doi.org/10.3389/fendo.2022.1043174

    Article  PubMed  Google Scholar 

  14. Sakaue S, Kanai M, Tanigawa Y et al (2021) A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 53:1415–1424. https://doi.org/10.1038/s41588-021-00931-x

    Article  CAS  PubMed  Google Scholar 

  15. Zhao JH, Stacey D, Eriksson N et al (2023) Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol 24:1540–1551. https://doi.org/10.1038/s41590-023-01588-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orrù V, Steri M, Sidore C et al (2020) Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 52:1036–1045. https://doi.org/10.1038/s41588-020-0684-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeung CHC, Schooling CM (2021) Systemic inflammatory regulators and risk of Alzheimer’s disease: a bidirectional Mendelian-randomization study. Int J Epidemiol 50:829–840. https://doi.org/10.1093/ije/dyaa241

    Article  PubMed  Google Scholar 

  18. Xiang M, Wang Y, Gao Z et al (2022) Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: a Mendelian randomization. Front Immunol 13:985729. https://doi.org/10.3389/fimmu.2022.985729

    Article  CAS  PubMed  Google Scholar 

  19. Palmer TM, Lawlor DA, Harbord RM et al (2012) Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Method Med Res 21:223–242. https://doi.org/10.1177/0962280210394459

    Article  Google Scholar 

  20. Verbanck M, Chen C-Y, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sproviero W, Winchester L, Newby D et al (2021) High blood pressure and risk of dementia: a two-sample Mendelian randomization study in the UK Biobank. Biol Psychiatry 89:817–824. https://doi.org/10.1016/j.biopsych.2020.12.015

    Article  PubMed  Google Scholar 

  22. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Min J-K, Kim Y-M, Kim SW et al (2005) TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol 175:531–540. https://doi.org/10.4049/jimmunol.175.1.531

    Article  CAS  PubMed  Google Scholar 

  24. Chen X-W, Du X-Y, Wang Y-X et al (2016) Irbesartan ameliorates diabetic nephropathy by suppressing the RANKL-RANK-NF-κB pathway in type 2 diabetic db/db mice. Mediators Inflamm 2016:1405924. https://doi.org/10.1155/2016/1405924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ke G, Chen X, Liao R et al (2021) Receptor activator of NF-κB mediates podocyte injury in diabetic nephropathy. Kidney Int 100:377–390. https://doi.org/10.1016/j.kint.2021.04.036

    Article  CAS  PubMed  Google Scholar 

  26. Mauri DN, Ebner R, Montgomery RI et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8:21–30. https://doi.org/10.1016/s1074-7613(00)80455-0

    Article  CAS  PubMed  Google Scholar 

  27. Halvorsen B, Santilli F, Scholz H et al (2016) LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro. Diabetologia 59:2134–2144. https://doi.org/10.1007/s00125-016-4036-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Tang M, Han B et al (2020) Tumor necrosis factor superfamily 14 is critical for the development of renal fibrosis. Aging (Albany NY) 12:25469–25486. https://doi.org/10.18632/aging.104151

    Article  CAS  PubMed  Google Scholar 

  29. Qiu Y, Tang J, Zhao Q et al (2023) From diabetic nephropathy to end-stage renal disease: the effect of chemokines on the immune system. J Diabetes Res 2023:3931043. https://doi.org/10.1155/2023/3931043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sandholm N, Forsblom C, Mäkinen V-P et al (2014) Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia 57:1143–1153. https://doi.org/10.1007/s00125-014-3202-3

    Article  CAS  PubMed  Google Scholar 

  31. Sanz I, Wei C, Lee FE-H, Anolik J (2008) Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol 20:67–82. https://doi.org/10.1016/j.smim.2007.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wangriatisak K, Kochayoo P, Thawornpan P et al (2022) CD4+ T-cell cooperation promoted pathogenic function of activated naïve B cells of patients with SLE. Lupus Sci Med 9:e000739. https://doi.org/10.1136/lupus-2022-000739

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frasca D, Diaz A, Romero M, Blomberg BB (2017) Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp Gerontol 87:113–120. https://doi.org/10.1016/j.exger.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  34. Wu S, Li W, Chen B et al (2022) Gene-based network analysis reveals prognostic biomarkers implicated in diabetic tubulointerstitial injury. Dis Markers 2022:2700392. https://doi.org/10.1155/2022/2700392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Z, Zheng Y, Sheng J et al (2022) CD3+CD4-CD8-(Double-negative) T cells in inflammation immune Disorders and Cancer. Front Immunol 13:816005. https://doi.org/10.3389/fimmu.2022.816005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crispín JC, Oukka M, Bayliss G et al (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181:8761–8766. https://doi.org/10.4049/jimmunol.181.12.8761

    Article  PubMed  Google Scholar 

  37. Lisowska KA, Storoniak H, Dębska-Ślizień A (2022) T cell subpopulations and cytokine levels in hemodialysis patients. Hum Immunol 83:134–143. https://doi.org/10.1016/j.humimm.2021.11.003

    Article  CAS  PubMed  Google Scholar 

  38. Galozzi P, Bindoli S, Doria A, Sfriso P (2021) The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 20:102785. https://doi.org/10.1016/j.autrev.2021.102785

    Article  CAS  PubMed  Google Scholar 

  39. Cavalli G, Colafrancesco S, Emmi G et al (2021) Interleukin 1α: a comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 20:102763. https://doi.org/10.1016/j.autrev.2021.102763

    Article  CAS  PubMed  Google Scholar 

  40. Salti T, Khazim K, Haddad R et al (2020) glucose induces IL-1α-dependent inflammation and extracellular matrix proteins expression and deposition in renal tubular epithelial cells in diabetic kidney disease. Front Immunol 11:1270. https://doi.org/10.3389/fimmu.2020.01270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to sincerely appreciate all GWAS participants and researchers for publicly sharing the summary statistics.

Author information

Authors and Affiliations

Authors

Contributions

HZ and YR conceived the study. YR accessed and acquired the data, performed the data analysis, prepared tables and figures, and wrote the manuscript. YR and HZ revised the manuscript.

Corresponding author

Correspondence to Honggang Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1675 KB)

Supplementary file2 (DOCX 149 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhang, H. The causal effect of inflammatory proteins and immune cell populations on diabetic nephropathy: evidence from Mendelian randomization. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04017-5

Keywords

Navigation