Skip to main content
Log in

Lubricant Effects on Articular Cartilage Sliding Biomechanics Under Physiological Fluid Load Support

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Articular cartilage maintains phenomenally low friction and strains in intact joints during articulation, yet after a century of study, the mechanisms underpinning cartilage’s in vivo functions remain uncertain. We recently re-introduced a unique benchtop testing system, the convergent stationary contact area (cSCA), to investigate frictions and strains in cartilage explants; the cSCA differs from other benchtop testing configurations by enabling sliding-induced hydrodynamic-driven fluid flows to influence interstitial hydration and lubrication during sliding. This study aimed to elucidate several points regarding cartilage tribomechanics and joint lubrication, including the following: (i) if the presence of putative lubricants alters the ability of sliding to drive tribological rehydration (i.e., sliding-driven compression recovery under loading); (ii) how lubricant presence influences the frictional behavior of articular cartilage when tested under physiologically representative sliding conditions (e.g., moderate-to-high hydration and fluid load support, low-to-moderate tissue strains, and fast sliding speeds); and (iii) interpreting these behaviors with respect to lubricant rheology at shear rates reflecting those found in cSCA tests and intact joints (> 104 s−1). We found that synovial fluid and hyaluronic acid solutions (i) were at most 3–10 × the viscosity of saline lubricants at physiological shear rates, (ii) substantially enhanced the rates of fluid and lubrication recovery during sliding, and (iii) minimized the amount of time the explants experienced detrimental ‘pathophysiological’ frictions by fostering tissue hydration recovery. Additionally, we show that when non-lubricating solutions and high sliding speeds are utilized, the cSCA can facilely replicate ‘semi-physiological’ strains and frictions, while the use of lubricant-containing baths fosters ‘physiologically consistent’ tribomechanical behaviors, improving the physiological relevance of long-term benchtop sliding tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [CP], upon reasonable request.

References

  1. Chan, D.D., Cai, L., Butz, K.D., Trippel, S.B., Nauman, E.A., Neu, C.P.: In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee. Sci. Rep. 6, 19220 (2016). https://doi.org/10.1038/srep19220

    Article  CAS  Google Scholar 

  2. Eckstein, F., Tieschky, M., Faber, S., Englmeier, K.H., Reiser, M.: Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat. Embryol. (Berl.) 200, 419–424 (1999). https://doi.org/10.1007/s004290050291

    Article  CAS  Google Scholar 

  3. Gilbert, S., Chen, T., Hutchinson, I.D., Choi, D., Voigt, C., Warren, R.F., et al.: Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living. J. Biomech. 47, 2006–2012 (2014). https://doi.org/10.1016/j.jbiomech.2013.11.003

    Article  Google Scholar 

  4. Lad, N.K., Liu, B., Ganapathy, P.K., Utturkar, G.M., Sutter, E.G., Moorman, C.T., III., et al.: Effect of normal gait on in vivo tibiofemoral cartilage strains. J. Biomech. 49, 2870–2876 (2017). https://doi.org/10.1016/j.jbiomech.2016.06.025

    Article  Google Scholar 

  5. Linn, F.C.: Lubrication of animal joints. J. Bone Jt. Surg. 49, 1079–1098 (1967)

    Article  CAS  Google Scholar 

  6. Ekholm, R., Ingelmark, B.E.: Functional thickness variations of human articular cartilage. Acta Soc. Med. Ups. 57, 39–59 (1952)

    CAS  Google Scholar 

  7. Ingelmark, B.E., Ekholm, R.: A study on variations in the thickness of articular cartilage in association with rest and periodical load; an experimental investigation on rabbits. Upsala Lakareforen. Forh. 53, 61 (1948)

    CAS  Google Scholar 

  8. Mansour, J.M.: Biomechanics of cartilage. In: Oatis, C.A. (ed.) The Mechanics and Pathomechanics of Human Movement, 3rd edn. pp. 77–92. Lippincott Williams & Wilkins (LWW) (2003)

  9. Lewis, P.R., McCutchen, C.W.: Mechanism of animal joints: experimental evidence for weeping lubrication in mammalian joints. Nature 184, 1285 (1959)

    Article  CAS  Google Scholar 

  10. Forster, H., Fisher, J.: The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 210, 109–118 (1996). https://doi.org/10.1243/pime_proc_1996_210_399_02

    Article  CAS  Google Scholar 

  11. Forster, H., Fisher, J.: The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 213, 329–345 (1999). https://doi.org/10.1243/0954411991535167

    Article  CAS  Google Scholar 

  12. Bonnevie, E.D., Bonassar, L.J.: A century of cartilage tribology research is informing lubrication therapies. J. Biomed. Eng. 142(3), 031004 (2020). https://doi.org/10.1115/1.4046045

    Article  Google Scholar 

  13. Hlaváček, M., Novák, J.: The role of synovial fluid filtration by cartilage in lubrication of synovial joints-III. Squeeze-film lubrication: axial symmetry under low loading conditions. J. Biomech. 28, 1193–1198 (1995). https://doi.org/10.1016/0021-9290(94)00180-C

    Article  Google Scholar 

  14. Ogston, A.G., Stanier, J.E.: The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol. 119, 244–252 (1953). https://doi.org/10.1113/jphysiol.1953.sp004842

    Article  CAS  Google Scholar 

  15. Davies, D.V.: Properties of synovial fluid. Proc. Inst. Mech. Eng. 181, 25–29 (1966). https://doi.org/10.1243/PIME_CONF_1966_181_203_02

    Article  Google Scholar 

  16. Wright, V., Dowson, D.: Lubrication and cartilage. J. Anat. 121, 107–118 (1976)

    CAS  Google Scholar 

  17. Bennett, M., Chin, A., Lee, H.J., Morales Cestero, E., Strazielle, N., Ghersi-Egea, J.-F., et al.: Proteoglycan 4 reduces neuroinflammation and protects the blood–brain barrier after traumatic brain injury. J. Neurotrauma 38, 385–398 (2020). https://doi.org/10.1089/neu.2020.7229

    Article  Google Scholar 

  18. Ateshian, G.A., Hung, C.T.: The natural synovial joint: properties of cartilage. IMechE 220, 657–670 (2006). https://doi.org/10.1243/13506501JET86

    Article  Google Scholar 

  19. Graham, B.T., Moore, A.C., Burris, D.L., Price, C.: Detrimental effects of long sedentary bouts on the biomechanical response of cartilage to sliding. Connect. Tissue Res. 61, 375–388 (2020). https://doi.org/10.1080/03008207.2019.1673382

    Article  CAS  Google Scholar 

  20. Rabinowicz, E. (ed.): Friction and Wear of Materials, 2nd edn. Wiley, New York (1995)

  21. Ateshian, G.A., Wang, H.Q., Lai, W.M.: The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Tribol. Asme 120, 241–248 (1998). https://doi.org/10.1115/1.2834416

    Article  Google Scholar 

  22. McCutchen, C.W.: The frictional properties of animal joints. Wear 5, 1–17 (1962)

    Article  Google Scholar 

  23. Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009). https://doi.org/10.1016/j.jbiomech.2009.04.040

    Article  Google Scholar 

  24. Gleghorn JP. Boundary Mode Frictional Properties of Articular Cartilage: Funtional Implications of Lubricin Localization. 2008.

  25. Schmidt, T.A., Gastelum, N.S., Nguyen, Q.T., Schumacher, B.L., Sah, R.L.: Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 56, 882–891 (2007). https://doi.org/10.1002/art.22446

    Article  Google Scholar 

  26. Gleghorn, J.P., Bonassar, L.J.: Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 41, 1910–1918 (2008). https://doi.org/10.1016/j.jbiomech.2008.03.043

    Article  Google Scholar 

  27. Walker, P.S., Dowson, D., Longfield, M.D., Wright, V.: “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512–520 (1968). https://doi.org/10.1136/ard.27.6.512

    Article  CAS  Google Scholar 

  28. Caligaris, M., Ateshian, G.A.: Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 16, 1220–1227 (2008). https://doi.org/10.1016/j.joca.2008.02.020

    Article  CAS  Google Scholar 

  29. Linn, F.C.: Lubrication of animal joints. II The mechanism. J. Biomech. 1, 193–205 (1968). https://doi.org/10.1016/0021-9290(68)90004-3

    Article  CAS  Google Scholar 

  30. Burris, D.L., Ramsey, L., Graham, B.T., Price, C., Moore, A.C.: How sliding and hydrodynamics contribute to articular cartilage fluid and lubrication recovery. Tribol. Lett. 67, 1–10 (2019). https://doi.org/10.1007/s11249-019-1158-7

    Article  Google Scholar 

  31. Moore, A.C., Schrader, J.L., Ulvila, J.J., Burris, D.L.: A review of methods to study hydration effects on cartilage friction. Tribol. Mater Surf. Interfaces 11, 202–214 (2017). https://doi.org/10.1080/17515831.2017.1397329

    Article  CAS  Google Scholar 

  32. Bonnevie, E.D., Baro, V.J., Wang, L., Burris, D.L.: In situ studies of cartilage microtribology: roles of speed and contact area. Tribol. Lett. 41, 83–95 (2011). https://doi.org/10.1007/s11249-010-9687-0

    Article  CAS  Google Scholar 

  33. Moore, A.C., Burris, D.L.: An analytical model to predict interstitial lubrication of cartilage in migrating contact areas. J. Biomech. 47, 148–153 (2014). https://doi.org/10.1016/j.jbiomech.2013.09.020

    Article  CAS  Google Scholar 

  34. Moore, A.C., Burris, D.L.: Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 25, 99–107 (2017). https://doi.org/10.1016/j.joca.2016.09.018

    Article  CAS  Google Scholar 

  35. Liu, B., Lad, N.K., Collins, A.T., Ganapathy, P.K., Utturkar, G.M., McNulty, A.L., et al.: In vivo tibial cartilage strains in regions of cartilage-to-cartilage contact and cartilage-to-meniscus contact in response to walking. Am. J. Sports Med. 45, 2817–2823 (2017). https://doi.org/10.1177/0363546517712506

    Article  Google Scholar 

  36. Brand, R.A.: Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop. J. 25, 82–94 (2005)

    Google Scholar 

  37. Morrell, K.C., Hodge, W.A., Krebs, D.E., Mann, R.W.: Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation. Proc. Natl. Acad. Sci. USA 102, 14819–14824 (2005). https://doi.org/10.1073/pnas.0507117102

    Article  CAS  Google Scholar 

  38. Mow, V.C.: The role of lubrication in biomechanical joints. J. Lubr. Technol. 91, 320–326 (1969)

    Article  Google Scholar 

  39. Kupratis, M.E., Gure, A., Ortved, K.F., Burris, D.L., Price, C.: Comparative tribology: articulation-induced rehydration of cartilage across species. Biotribology (2020). https://doi.org/10.1016/j.biotri.2020.100159

    Article  Google Scholar 

  40. Burris, D.L., Moore, A.C.: Cartilage and joint lubrication: new insights into the role of hydrodynamics. Biotribology 12, 8–14 (2017). https://doi.org/10.1016/j.biotri.2017.09.001

    Article  Google Scholar 

  41. Graham, B.T., Moore, A.C., Burris, D.L., Price, C.: Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthr. Cartil. 25, 2100–2107 (2017). https://doi.org/10.1016/j.joca.2017.08.014

    Article  CAS  Google Scholar 

  42. Farnham, M.S., Larson, R.E., Burris, D.L., Price, C.: Effects of mechanical injury on the tribological rehydration and lubrication of articular cartilage. J. Mech. Behav. Biomed. Mater. 101, 551–556 (2020). https://doi.org/10.1016/j.jmbbm.2019.103422

    Article  Google Scholar 

  43. Liao, J.J., Smith, D.W., Miramini, S., Thibbotuwawa, N., Gardiner, B.S., Zhang, L.: The investigation of fluid flow in cartilage contact gap. J. Mech. Behav. Biomed. Mater. 95, 153–164 (2019). https://doi.org/10.1016/j.jmbbm.2019.04.008

    Article  Google Scholar 

  44. Liao, J.J., Miramini, S., Liu, X., Zhang, L.: Computational study on synovial fluid flow behaviour in cartilage contact gap under osteoarthritic condition. Comput. Biol. Med. 123, 103915 (2020). https://doi.org/10.1016/j.compbiomed.2020.103915

    Article  CAS  Google Scholar 

  45. Liao, J.J., Smith, D.W., Miramini, S., Gardiner, B.S., Zhang, L.: A coupled contact model of cartilage lubrication in the mixed-mode regime under static compression. Tribol. Int. 145, 106185 (2020). https://doi.org/10.1016/j.triboint.2020.106185

    Article  Google Scholar 

  46. Baumgarten, M., Bloebaum, R.D., Ross, S.D.K., Campbell, P., Sarmiento, A.: Normal human synovial fluid: osmolality and exercise-induced changes. J. Bone Jt. Surg. Ser. A 67, 1336–1339 (1985). https://doi.org/10.2106/00004623-198567090-00005

    Article  CAS  Google Scholar 

  47. Bell, C.J., Ingham, E., Fisher, J.: Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 220, 23–31 (2006). https://doi.org/10.1243/095441105X69060

    Article  CAS  Google Scholar 

  48. Hua, Z.K., Su, S.H., Zhang, J.H.: Tribological study on new therapeutic bionic lubricants. Tribol. Lett. 28, 51–58 (2007). https://doi.org/10.1007/s11249-007-9247-4

    Article  CAS  Google Scholar 

  49. Durney, K.M., Kia, D.S., Wang, T., Singh, A., Karbowski, L., Koo, H.J., et al.: Physiologic medium maintains the homeostasis of immature bovine articular cartilage explants in long-term culture. J. Biomed. Eng. (2019). https://doi.org/10.1115/1.4041901

    Article  Google Scholar 

  50. Bush, P.G., Hall, A.C.: The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J. Orthop. Res. 19, 768–778 (2001). https://doi.org/10.1016/S0736-0266(01)00013-4

    Article  CAS  Google Scholar 

  51. Amin, A.K., Huntley, J.S., Simpson, A.H.R.W., Hall, A.C.: Increasing the osmolarity of joint irrigation solutions may avoid injury to cartilage: a pilot study. Clin. Orthop. Relat. Res. 468, 875–884 (2010). https://doi.org/10.1007/s11999-009-0983-7

    Article  Google Scholar 

  52. Majd, S.E., Rizqy, A.I., Kaper, H.J., Schmidt, T.A., Kuijer, R., Sharma, P.K.: An in vitro study of cartilage–meniscus tribology to understand the changes caused by a meniscus implant. Colloids Surf. B Biointerfaces 155, 294–303 (2017). https://doi.org/10.1016/j.colsurfb.2017.04.034

    Article  CAS  Google Scholar 

  53. Bennike, T., Ayturk, U., Haslauer, C.M., Froehlich, J.W., Proffen, B.L., Barnaby, O., et al.: A normative study of the synovial fluid proteome from healthy porcine knee joints. J. Proteome Res. 13, 4377–4387 (2014). https://doi.org/10.1021/pr500587x

    Article  CAS  Google Scholar 

  54. Dowson, D.: Biotribology of natural and replacement synovial joints. Biomech. Diarthrodial Jt. 11, 305–345 (1990)

    Article  Google Scholar 

  55. Klein, J.: Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 220, 691–710 (2006). https://doi.org/10.1243/13506501JET143

    Article  CAS  Google Scholar 

  56. Jahn, S., Seror, J., Klein, J.: Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18, 235–258 (2016). https://doi.org/10.1146/annurev-bioeng-081514-123305

    Article  CAS  Google Scholar 

  57. Pipe, C.J., Majmudar, T.S., McKinley, G.H.: High shear rate viscometry. Rheol. Acta 47, 621–642 (2008). https://doi.org/10.1007/s00397-008-0268-1

    Article  CAS  Google Scholar 

  58. Krishnan, R., Kopacz, M., Ateshian, G.A.: Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22, 565–570 (2004). https://doi.org/10.1016/j.orthres.2003.07.002

    Article  Google Scholar 

  59. Jones, E.S.: Joint lubrication. Lancet 227, 1043–1045 (1936)

    Article  Google Scholar 

  60. Charnley, J.: The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann. Rheum. Dis. 19, 10–19 (1960). https://doi.org/10.1136/ard.19.1.10

    Article  CAS  Google Scholar 

  61. Mabuchi, K., Tsukamoto, Y., Obara, T., Yamaguchi, T.: The effect of additive hyaluronic acid on animal joints with experimentally reduced lubricating ability. J. Biomed. Mater. Res. 28, 865–870 (1994). https://doi.org/10.1002/jbm.820280805

    Article  CAS  Google Scholar 

  62. Clarke, I.C., Contini, R., Kenedi, R.M.: Friction and wear studies of articular cartilage: a scanning electron microscopic study. Am. Soc. Mech. Eng. 97, 358–66 (1975). https://doi.org/10.1115/1.3452600

    Article  Google Scholar 

  63. Basalo, I.M., Raj, D., Krishnan, R., Chen, F.H., Hung, C.T., Ateshian, G.A.: Effects of enzymatic degradation on the frictional response of articular cartilage in stress relaxation. J. Biomech. 38, 1343–1349 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.045.EFFECTS

    Article  Google Scholar 

  64. Neu, C.P., Reddi, A.H., Komvopoulos, K., Schmid, T.M., Di Cesare, P.E.: Increased friction coefficient and superficial zone protein expression in patients with advanced osteoarthritis. Arthritis Rheum. 62, 2680–2687 (2010). https://doi.org/10.1002/art.27577

    Article  CAS  Google Scholar 

  65. Moore, A.C., Burris, D.L.: Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis. Osteoarthr. Cartil. 23, 161–169 (2015). https://doi.org/10.1016/j.joca.2014.09.021

    Article  CAS  Google Scholar 

  66. Bonnevie, E.D., Delco, M.L., Bartell, L.R., Jasty, N., Cohen, I., Fortier, L.A., et al.: Microscale frictional strains determine chondrocyte fate in loaded cartilage. J. Biomech. 74, 72–78 (2018). https://doi.org/10.1016/j.jbiomech.2018.04.020

    Article  Google Scholar 

  67. Cook, S.G., Bonassar, L.J.: Interaction with cartilage increases the viscosity of hyaluronic acid solutions. ACS Biomater. Sci. Eng. 6, 2787–2795 (2020). https://doi.org/10.1021/acsbiomaterials.0c00100

    Article  CAS  Google Scholar 

  68. Shinmori, H., Kubota, M., Morita, T., Yamaguchi, T., Sawae, Y.: Effects of synovial fluid constituents on friction between UHMWPE and CoCrMo. Tribol. Online 15, 283–292 (2020). https://doi.org/10.2474/trol.15.283

    Article  Google Scholar 

  69. Cooke, A.F., Dowson, D., Wright, V.: The rheology of synovial fluid and some potential synthetic lubricants for degenerate synovial joints. Eng. Med. 7, 66–72 (1978). https://doi.org/10.1243/EMED_JOUR_1978_007_021_02

    Article  Google Scholar 

  70. Hou, J.S., Holmes, M.H., Lai, W.M., Mow, V.C.: Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Eng. 111, 78 (1989). https://doi.org/10.1115/1.3168343

    Article  CAS  Google Scholar 

  71. Horibata, S., Yarimitsu, S., Fujie, H.: Effect of synovial fluid pressurization on the biphasic lubrication property of articular cartilage. Biotribology 19, 100098 (2019). https://doi.org/10.1016/j.biotri.2019.100098

    Article  Google Scholar 

  72. Klein, J.: Hydration lubrication. Friction 1, 1–23 (2013). https://doi.org/10.1007/s40544-013-0001-7

    Article  CAS  Google Scholar 

  73. Liu, Z., Lin, W., Fan, Y., Kampf, N., Wang, Y., Klein, J.: Effects of hyaluronan molecular weight on the lubrication of cartilage-emulating boundary-layers. Biomacromolecules (2020). https://doi.org/10.1021/acs.biomac.0c01151

    Article  Google Scholar 

  74. Waller, K.A., Zhang, L.X., Fleming, B.C., Jay, G.D.: Preventing friction-induced chondrocyte apoptosis: comparison of human synovial fluid and hylan G-F 20. J. Rheumatol. 39, 1473–1480 (2012). https://doi.org/10.3899/jrheum.111427

    Article  Google Scholar 

  75. Schmidt, T.A., Sah, R.L.: Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr. Cartil. 15, 35–47 (2007). https://doi.org/10.1016/j.joca.2006.06.005

    Article  CAS  Google Scholar 

  76. Waller, K.A., Zhang, L.X., Elsaid, K.A., Fleming, B.C., Warman, M.L., Jay, G.D.: Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc. Natl. Acad. Sci. USA 110, 5852–5857 (2013). https://doi.org/10.1073/pnas.1219289110

    Article  CAS  Google Scholar 

  77. Ballard, B.L., Antonacci, J.M., Temple-Wong, M.M., Hui, A.Y., Schumacher, B.L., Bugbee, W.D., et al.: Effect of tibial plateau fracture on lubrication function and composition of synovial fluid. J. Bone Jt. Surg. 94, e64 1 (2012). https://doi.org/10.2106/JBJS.K.00046

    Article  Google Scholar 

  78. Ludwig, T.E., Hunter, M.M., Schmidt, T.A.: Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet. Disord. 16, 1–10 (2015). https://doi.org/10.1186/s12891-015-0842-5

    Article  CAS  Google Scholar 

  79. Abubacker, S., McPeak, A., Dorosz, S.G., Egberts, P., Schmidt, T.A.: Effect of counterface on cartilage boundary lubricating ability by proteoglycan 4 and hyaluronan: cartilage-glass versus cartilage–cartilage. J. Orthop. Res. 36, 2923–2931 (2018). https://doi.org/10.1002/jor.24104

    Article  CAS  Google Scholar 

  80. Schiavinato, A., Whiteside, R.A.: Effective lubrication of articular cartilage by an amphiphilic hyaluronic acid derivative. Clin. Biomech. 27, 515–519 (2012). https://doi.org/10.1016/j.clinbiomech.2011.11.012

    Article  Google Scholar 

  81. Bonnevie, E.D., Galesso, D., Secchieri, C., Cohen, I., Bonassar, L.J.: Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS One 10, 1–15 (2015). https://doi.org/10.1371/journal.pone.0143415

    Article  CAS  Google Scholar 

  82. Twitchell, C., Walimbe, T., Liu, J.C., Panitch, A.: Peptide-modified chondroitin sulfate reduces coefficient of friction at articular cartilage surface. Curr. Res. Biotechnol. 2, 16–21 (2020). https://doi.org/10.1016/j.crbiot.2020.02.002

    Article  Google Scholar 

  83. Kwiecinski, J.J., Dorosz, S.G., Ludwig, T.E., Abubacker, S., Cowman, M.K., Schmidt, T.A.: The effect of molecular weight on hyaluronan’s cartilage boundary lubricating ability—alone and in combination with proteoglycan 4. Osteoarthr. Cartil. 19, 1356–1362 (2011). https://doi.org/10.1016/j.joca.2011.07.019

    Article  CAS  Google Scholar 

  84. Graham, B.T., Moore, A.C., Burris, D.L., Price, C.: Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding. J. Biomech. 71, 271–276 (2018). https://doi.org/10.1016/j.jbiomech.2018.01.041

    Article  Google Scholar 

  85. Pawaskar, S.S., Jin, Z.M., Fisher, J.: Modelling of fluid support inside articular cartilage during sliding. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 221, 165–174 (2007). https://doi.org/10.1243/13506501JET241

    Article  Google Scholar 

  86. Trevino, R.L., Pacione, C.A., Malfait, A.M., Chubinskaya, S., Wimmer, M.A.: Development of a cartilage shear-damage model to investigate the impact of surface injury on chondrocytes and extracellular matrix wear. Cartilage 8, 444–455 (2017). https://doi.org/10.1177/1947603516681133

    Article  Google Scholar 

  87. Tairy, O., Kampf, N., Driver, M.J., Armes, S.P., Klein, J.: Dense, highly hydrated polymer brushes via modified atom-transfer-radical-polymerization: structure, surface interactions, and frictional dissipation. Macromolecules 48, 140–151 (2015). https://doi.org/10.1021/ma5019439

    Article  CAS  Google Scholar 

  88. Muller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005). https://doi.org/10.1021/ma0501545

    Article  CAS  Google Scholar 

  89. Manuel, J., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh size control of polymer fluctuation lubrication in Gemini hydrogels. Biotribology 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  90. Simič, R., Yetkin, M., Zhang, K., Spencer, N.D.: Importance of hydration and surface structure for friction of acrylamide hydrogels. Tribol. Lett. 68, 1–12 (2020). https://doi.org/10.1007/s11249-020-01304-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material was supported by the National Science Foundation (NSF) Biomaterials and Mechanobiology program [1635536] and the NSF Graduate Research Fellowship Program [1247394]. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Funding

Funding for this research was provided by the NSF GRFP-1247394 and NSF BMMB-1635536.

Author information

Authors and Affiliations

Authors

Contributions

MSF and CP designed the study and wrote the manuscript. Data collection and analysis were performed by MSF; rheological measurements were performed by MSF with the assistance of JSH and NJW; synovial fluid was collected by KFO. Manuscript editing and revision were performed by MSF, KFO, JSH, NJW, DLB, and CP.

Corresponding author

Correspondence to Christopher Price.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnham, M.S., Ortved, K.F., Horner, J.S. et al. Lubricant Effects on Articular Cartilage Sliding Biomechanics Under Physiological Fluid Load Support. Tribol Lett 69, 56 (2021). https://doi.org/10.1007/s11249-021-01430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01430-0

Keywords

Navigation