Skip to main content
Log in

Study of Nanoscale Wear of SiC/Al Nanocomposites Using Molecular Dynamics Simulations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, molecular dynamics simulations are performed to investigate the nanoscale wear behavior of SiC particle-reinforced aluminum matrix composites (SiC/Al NCs) through nanoscratching using a spherical diamond indenter. A series of simulations are conducted to explore the effects of scratching depth, scratching speed, temperature, indenter size, and particle size during the nanoscratching process. We find the dislocation strengthening in the nanoscratching of SiC/Al NCs. It is also found that the frictional force and normal force increase with the increase of scratching depth, indenter size, and nanoparticle size. Moreover, the friction coefficient increases with the scratching depth. However, the friction coefficient declines with the increase of indenter size and nanoparticle size. Furthermore, for a larger scratching speed, the frictional force becomes smaller, while the normal force becomes larger, which is mainly determined by the competition between strain rate hardening and thermal softening. We also find that both the frictional force and normal force become smaller for a higher temperature resulting from thermal softening effect. The insights into the nanoscale wear properties of SiC/Al NCs lay a foundation for the wide applications of SiC/Al NCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Sahin, Y., Kilicli, V.: Abrasive wear behaviour of SiCp/Al alloy composite in comparison with ausferritic ductile iron. Wear. 271, 2766–2774 (2011)

    Article  CAS  Google Scholar 

  2. Ghias, A.S.A., VijayaRamnath, B.: Investigation of tensile property of aluminumSiC metal matrix composite. Appl. Mech. Mater. 3996, 252–256 (2015)

    Article  Google Scholar 

  3. Hunt, M.: Automotive MMCs: better and cheapter. J. Mater. Eng. 106, 45–53 (1989)

    Google Scholar 

  4. Wu, S., He, F., Xie, G.X., Bian, Z.L., Luo, J.B., Wen, S.Z.: Black phosphorus: degradation favors lubrication. Nano Lett. 18, 5618–5627 (2018)

    Article  CAS  Google Scholar 

  5. Wang, W., Xie, G.X., Luo, J.B.: Black phosphorus as a new lubricant. Friction 6, 116–142 (2018)

    Article  CAS  Google Scholar 

  6. Xie, G.X., Luo, J.B., Guo, D., Liu, S.H.: Nanoconfined ionic liquids under electric fields. Appl. Phys. Lett. 96, 043112 (2010)

    Article  Google Scholar 

  7. Cao, L., Wang, Y., Yao, C.K.: The wear properties of a SiC-whisker-reinforced aluminum composite. Wear 140, 273–277 (1990)

    Article  CAS  Google Scholar 

  8. El-Kady, O., Fathy, A.: Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater. Des. 54, 348–353 (2014)

    Article  CAS  Google Scholar 

  9. Youssef, Y., El-Sayed, M.: Effect of reinforcement particle size and weight fraction on the mechanical properties of SiC particle reinforced Al metal matrix composites. Intl. Rev. Mech. Eng. 10, 261–265 (2016)

    Google Scholar 

  10. Penchal Reddy, M., Shakoor, R.A., Parande, G., Manakari, V., Ubaid, F., Mohamed, A.M.A., Gupta, M.: Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci. 27, 606–614 (2017)

    Article  Google Scholar 

  11. Rahman, M.H., Rashed, H.M.M.A.: Characterization of silicon carbide reinforced aluminum matrix composites. Proc. Eng. 90, 103–109 (2014)

    Article  CAS  Google Scholar 

  12. Liu, Q.Y., Wang, F., Wu, W.W., et al.: Enhanced mechanical properties of SiC/Al composites at cryogenic temperatures. Ceram. Int. 45, 4099–4102 (2019)

    Article  CAS  Google Scholar 

  13. Kong, X., Wang, B., Wang, M., et al.: Microscratch characteristic and deformation mechanism of SiC particle-reinforced composites at elevated temperatures. Adv. Compos. Lett. 29, 1–11 (2020)

    Article  Google Scholar 

  14. Jiang, C.X., Ruan, S.L., Yang, C.Q.: Molecular dynamics simulations of mechanical behavior of nanocrystalline β-SiC/Al composites. Dongbei Daxue xuebao/Journal of Northeastern University. 34, 194–198 (2013)

    CAS  Google Scholar 

  15. Huo, S.Y., Xie, L.J., Xiang, J.F., Pang, S.Q., Hu, F., Umer, U.: Atomic-level study on mechanical properties and strengthening mechanisms of SiC/Al nano-composites. Appl. Phys. A 124, 209.1-209.12 (2018)

    Article  Google Scholar 

  16. Mohammadi, S., Montazeri, A., Urbassek, H.M.: Geometrical aspects of nanofillers influence the tribological performance of Al-based nanocomposites. Wear 444–445, 203117 (2020)

    Article  Google Scholar 

  17. Alhafez, I.A., Urbassek, H.M.: Influence of tip adhesion on nanoindentation and scratching. Modell. Simulat. Mater. Sci. Eng. 27, 065014 (2019)

    Article  CAS  Google Scholar 

  18. Fang, Q.H., Wang, Q., Li, J., et al.: Mechanisms of subsurface damage and material removal during high speed grinding processes in Ni/Cu multilayers using a molecular dynamics study. RSC Adv. 7, 42047–42055 (2017)

    Article  CAS  Google Scholar 

  19. Zhu, P.Z., Qiu, C., Fang, F.Z., Yuan, D.D., Shen, X.C.: Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Appl. Surf. Sci. 317, 432–442 (2014)

    Article  CAS  Google Scholar 

  20. Li, B.Z., Li, J.Y., Zhu, P.Z., Xu, J.H., Li, R., Yu, J.X.: Influence of crystal anisotropy on deformation behaviors in nanoscratching of AlN. Appl. Surf. Sci. 487, 1068–1076 (2019)

    Article  CAS  Google Scholar 

  21. Zhu, P.Z., Fang, F.Z.: Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl. Phys. A. 108, 415–421 (2012)

    Article  CAS  Google Scholar 

  22. Zhu, P.Z., Hu, Y.Z., Ma, T.B., Wang, H.: Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol. Lett. 41, 41–46 (2011)

    Article  Google Scholar 

  23. Xu, F.F., Fang, F.Z., Zhang, X.D.: Hard particle effect on surface generation in nano-cutting. Appl. Surf. Sci. 425, 1020–1027 (2017)

    Article  CAS  Google Scholar 

  24. Lu, S., Li, Z., Zhang, J., et al.: Finite element investigation of the influence of SiC particle distribution on diamond cutting of SiCp/Al composites. Nanomanuf. Metrol. 3, 1–9 (2020)

    Article  Google Scholar 

  25. Lu, S.J., Zhang, J.J., Li, Z.Q., et al.: Cutting path-dependent machinability of SiCp/Al composite under multi-step ultra-precision diamond cutting. Chin. J. Aeronaut. 34(4), 241–252 (2020)

    Article  Google Scholar 

  26. Shao, J.C., Xiao, B.L., Wang, Q.Z., et al.: An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites. Compos. Sci. Technol. 71(1), 39–45 (2011)

    Article  CAS  Google Scholar 

  27. Mendelev, M.I., Kramer, M.J., Becker, C.A., Asta, M.: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Phil. Mag. 88, 1723–1750 (2008)

    Article  CAS  Google Scholar 

  28. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 5566–5568 (1989)

    Article  CAS  Google Scholar 

  29. Fang, T.H., Weng, C.I., Chang, J.G.: Molecular dynamics simulation of nano-lithography process using atomic force microscopy. Surf. Sci. 501, 138–147 (2002)

    Article  CAS  Google Scholar 

  30. Peng, P., Liao, G.L., Shi, T.L., et al.: Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl. Surf. Sci. 256, 6284–6290 (2010)

    Article  CAS  Google Scholar 

  31. Liu, Y., Li, B.Z., Kong, L.F.: A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide. Comput. Mater. Sci. 148, 76–86 (2018)

    Article  CAS  Google Scholar 

  32. Dandekar, C.R., Shin, Y.C.: Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics. Compos. Part A. 42, 355–363 (2011)

    Article  Google Scholar 

  33. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  34. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO: the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18, 15012 (2010)

    Article  Google Scholar 

  35. Doan, D.Q., Fang, T.H., Tran, A.S., Chen, T.S.: Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Comput. Mater. Sci. 170, 109162 (2019)

    Article  CAS  Google Scholar 

  36. Goel, S., Luo, X., Reuben, R.L.: Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comput. Mater. Sci. 51, 402–408 (2012)

    Article  CAS  Google Scholar 

  37. Sharma, A., Datta, D., Balasubramaniam, R.: A molecular dynamics simulation of wear mechanism of diamond tool in nanoscale cutting of copper beryllium. Int. J. Adv. Manuf. Technol. 102, 731–745 (2019)

    Article  Google Scholar 

  38. Alexander, S., Vasily, V.B., Athanasios, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012)

    Article  Google Scholar 

  39. Porter, D.A., Easteling, K.E.: Phase Transformations in Metals and Alloys. Chapman Hall, London (1981)

    Google Scholar 

  40. Walsh, P., Omeltchenko, A., Kalia, R.K., Nakano, A., Vashishta, P., Saini, S.: Nanoindentation of silicon nitrid: a multi-million atom molecular dynamics study. Appl. Phys. Lett. 82, 118–120 (2003)

    Article  CAS  Google Scholar 

  41. Dai, H.F., Li, S.B., Chen, G.Y.: Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon. Proc. IMechE Part J. 233, 61–73 (2018)

    Article  Google Scholar 

  42. Zhang, Z.B., Urbassek, H.M.: Dislocation-based strengthening mechanisms in metal-matrix nanocomposites: a molecular dynamics study of the influence of reinforcement shape in the Al-Si system. Comput. Mater. Sci. 45, 109–115 (2018)

    Article  Google Scholar 

  43. Chen, S., Aitken, Z.H., Wu, Z., et al.: Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys. Mater. Sci. Eng. A 773, 138873 (2019)

    Article  Google Scholar 

  44. Patil, R.P., Doan, D., Aitken, Z.H., et al.: Hardening in Au-Ag nanoboxes from stacking fault-dislocation interactions. Nat. Commun. 11(1), 2923 (2020)

    Article  CAS  Google Scholar 

  45. Li, J., Fang, Q.H., Liu, Y.W., et al.: Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. Intl. J. Adv. Manuf. Technol. 77, 1057–1070 (2015)

    Article  Google Scholar 

  46. Chen, D.K., Costello, L.L., Geller, C.B., Zhu, T., McDowell, D.L.: Atomistic modeling of dislocation cross-slip in nickel using free-end nudged elastic band method. Acta Mater. 168, 436–447 (2019)

    Article  CAS  Google Scholar 

  47. Zhu, P., Fang, F.: Study of the minimum depth of material removal in nanoscale mechanical machining of single crystalline copper. Comput. Mater. Sci. 118, 192–202 (2016)

    Article  CAS  Google Scholar 

  48. Pei, Q.X., Lu, C., Lee, H.P.: Large scale molecular dynamics study of nanometric machining of copper. Comput. Mater. Sci. 41, 177–185 (2007)

    Article  CAS  Google Scholar 

  49. Zhu, P.Z., Hu, Y.Z., Ma, T.B., Wang, H.: Study of AFM-based nanometric cutting process using molecular dynamics. Appl. Surf. Sci. 256, 7160–7165 (2010)

    Article  CAS  Google Scholar 

  50. Alhafez, I.A., Ruestes, I.A., Urbasse, H.M.: Size of the plastic zone produced by nanoscratching. Tribol. Lett. 66, 1–12 (2017)

    Google Scholar 

  51. Wang, J., Chen, S., Cui, K., et al.: Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano 10(2), 2893–2902 (2016)

    Article  CAS  Google Scholar 

  52. Yaghoobi, M., Voyiadjis, G.Z.: The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates. Acta Mater. 151, 1–10 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results described in this paper are obtained on the China National Grid (http://www.cngrid.org) / China Scientific Computing Grid (http://www.scgrid.cn)

Funding

This work is supported by Beijing Natural Science Foundation (No. 3202024), National Natural Science Foundation of China (Nos. 51405337 and 51875405), and Natural Science Foundation of Tianjin (No. 15JCQNJC04800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhe Zhu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 5007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Zhu, P. & Li, B. Study of Nanoscale Wear of SiC/Al Nanocomposites Using Molecular Dynamics Simulations. Tribol Lett 69, 38 (2021). https://doi.org/10.1007/s11249-021-01414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01414-0

Keywords

Navigation