Skip to main content
Log in

Vascular endothelium-specific overexpression of human catalase in cloned pigs

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H2O2), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H2O2 would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT–PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H2O2 in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H2O2 in vasodilation and in the mechanisms underlying vascular health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramoff M, Magelhaes P, Ram S (2004) Image processing with Image J. Biophtonics International 11:36–42

    Google Scholar 

  • Ammerschlaeger M, Beigel J, Klein K, Mueller SO (2004) Characterization of the species-specificity of peroxisome proliferators in rat and human hepatocytes. Toxicol Sci 78:229–240

    Article  PubMed  CAS  Google Scholar 

  • Ardanaz N, Pagano PJ (2006) Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med (Maywood) 231:237–251

    CAS  Google Scholar 

  • Aris A, Benali S, Ouellet A, Moutquin JM, Leblanc S (2009) Potential biomarkers of preeclampsia: inverse correlation between hydrogen peroxide and nitric oxide early in maternal circulation and at Term in placenta of women with preeclampsia. Placenta 30:342–437

    Article  PubMed  CAS  Google Scholar 

  • Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2:481–485

    Article  PubMed  CAS  Google Scholar 

  • Bender SB, Houwelingen MJ van, Merkus D, Duncker DJ, Laughlin MH (2010) Quantitative analysis of exercise-induced enhancement of early- and late-systolic retrograde coronary blood flow. J Appl Physiol (Bethesda, Md.: 1985) 108:507–514

    Google Scholar 

  • Bodiga S, Gruenloh SK, Gao Y, Manthati VL, Dubasi N, Falck JR, Medhora MM, Jacobs ER (2010) 20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt. Am J Physiol Lung Cell Mol Physiol 289:L564–L574

    Google Scholar 

  • Capettini LSA, Cortes SF, Gomes MA, Silva GAB, Pesquero JL, Lopes MJ, Teixeira MM, Lemos VS (2008) Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol 295:H2503–H2511

    Article  PubMed  CAS  Google Scholar 

  • Carroll JA, Carter DB, Korte SW, Prather RS (2005) Evaluation of the acute phase response in cloned pigs following a lipopolysaccharide challenge. Domest Anim Endocrinol 29:564–572

    Article  PubMed  CAS  Google Scholar 

  • Collins AR, Lyon CJ, Xia X, Liu JZ, Tangirala RK, Yin F, Boyadjian R, Bikineyeva A, Praticò D, Harrison DG, Hsueh WA (2009) Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ Res 104:e42–e54

    Article  PubMed  CAS  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  PubMed  Google Scholar 

  • Dong D, Yue P, Yang B, Wang W (2008) Hydrogen peroxide stimulates the Ca(2+)-activated big-conductance K channels (BK) through cGMP signaling pathway in cultured human endothelial cells. Cell Physiol Biochem 22:119–126

    Article  PubMed  CAS  Google Scholar 

  • Drouin A, Thorin E (2009) Flow-induced dilation is mediated by Akt-dependent activation of endothelial nitric oxide synthase-derived hydrogen peroxide in mouse cerebral arteries. Stroke 40:1827–1833

    Google Scholar 

  • Griffin KL, Woodman CR, Price EM, Laughlin MH, Parker JL (2001) Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training. Circulation 104:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal 11:2655–2671

    Article  PubMed  CAS  Google Scholar 

  • Hecquet CM, Malik AB (2009) Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb Haemost 101:619–625

    PubMed  CAS  Google Scholar 

  • Homma H, Takahashi T, Seki H, Ohtani M, Kondoh T, Fukuda M (2001) Immunohistochemical localization of inducible nitric oxide synthase in synovial tissue of human temporomandibular joints with internal derangement. Arch Oral Biol 46:93–97

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi S, Hiraku Y, Murata M, Oikawa S (2002) The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 32:822–832

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Sun X, Wiseman DA, Tian J, Umapathy NS, Verin AD, Black SM (2009) Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of Sp1 activity. DNA Cell Biol 28:119–129

    Article  PubMed  CAS  Google Scholar 

  • Lai L, Prather RS (2003) Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5:233–241

    Article  PubMed  CAS  Google Scholar 

  • Lauer N, Suvorava T, Ruther U, Jacob R, Meyer W, Harrison DG, Kojda G (2005) Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res 65:254–262

    Article  PubMed  CAS  Google Scholar 

  • Laughlin MH, Pollock JS, Amann JF, Hollis ML, Woodman CR, Price EM (2001) Training induces nonuniform increases in eNOS content along the coronary arterial tree. J Appl Physiol 90:501–510

    PubMed  CAS  Google Scholar 

  • Luksha L, Nisell H, Luksha N, Kublickas M, Hultenby K, Kublickiene K (2008) Endothelium-derived hyperpolarizing factor in preeclampsia: heterogeneous contribution, mechanisms, and morphological prerequisites. Am J Physiol Regul Integr Comp Physiol 294:R510–R519

    Article  PubMed  CAS  Google Scholar 

  • Marvar PJ, Hammer LW, Boegehold MA (2007) Hydrogen peroxide-dependent arteriolar dilation in contracting muscle of rats fed normal and high salt diets. Microcirculation 14:779–791

    Article  PubMed  CAS  Google Scholar 

  • Mastromonaco GF, Perrault SD, Betts DH, King WA (2006) Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer. BMC Dev Biol 6:41

    Article  PubMed  Google Scholar 

  • McAllister RM, Albarracin I, Price EM, Smith TK, Turk JR, Wyatt KD (2005) Thyroid status and nitric oxide in rat arterial vessels. J Endocrinol 185:111–119

    Article  PubMed  CAS  Google Scholar 

  • Mink SN, Kasian K, Santos Martinez LE, Jacobs H, Bose R, Cheng Z, Light RB (2008) Lysozyme, a mediator of sepsis that produces vasodilation by hydrogen peroxide signaling in an arterial preparation. Am J Physiol Heart Circ Physiol 294:H1724–H1735

    Article  PubMed  CAS  Google Scholar 

  • Prather RS, Sutovsky P, Green JA (2004) Nuclear remodeling and reprogramming in transgenic pig production. Exp Biol Med (Maywood) 229:1120–1126

    CAS  Google Scholar 

  • Ross JW, Whyte JJ, Zhao J, Samuel M, Wells KD, Prather RS (2010) Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res 19:611–620

    Article  PubMed  CAS  Google Scholar 

  • Samora JB, Frisbee JC, Boegehold MA (2008) Hydrogen peroxide emerges as a regulator of tone in skeletal muscle arterioles during juvenile growth. Microcirculation 15:151–161

    Article  PubMed  CAS  Google Scholar 

  • Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 94:3058–3063

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protocols 3:1101–1108

    Article  CAS  Google Scholar 

  • Searles CD (2006) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol 291:C803–C816

    Article  PubMed  CAS  Google Scholar 

  • Seegar TCM, Eller B, Tzvetkova-Robev D, Kolev MV, Henderson SC, Nikolov DB, Barton WA (2010) Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell 37:643–655

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Hiroi T, Ishii M, Hagiwara T, Wajima T, Miyazaki A, Kiuchi Y (2008) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through activation of the Jak2 tyrosine kinase pathway in vascular endothelial cells. Int J Biochem Cell Biol 40:755–765

    Article  PubMed  CAS  Google Scholar 

  • Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM (2009) Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol (Lond) 587:3885–3897

    Article  CAS  Google Scholar 

  • Suvorava T, Kojda G (2009) Reactive oxygen species as cardiovascular mediators: lessons from endothelial-specific protein overexpression mouse models. Biochim Biophys Acta 1787:802–810

    Google Scholar 

  • Suvorava T, Lauer N, Kumpf S, Jacob R, Meyer W, Kojda G (2005) Endogenous vascular hydrogen peroxide regulates arteriolar tension in vivo. Circulation 112:2487–2495

    Article  PubMed  CAS  Google Scholar 

  • Thengchaisri N, Shipley R, Ren Y, Parker J, Kuo L (2007) Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: role of hydrogen peroxide. Arterioscler Thromb Vasc Biol 27:791–798

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Kotamraju S, Zielonka J, Harder DR, Kalyanaraman B (2007) Hydrogen peroxide induces nitric oxide and proteosome activity in endothelial cells: a bell-shaped signaling response. Free Radic Biol Med 42:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10:1713–1765

    Article  PubMed  CAS  Google Scholar 

  • Turk JR, Laughlin MH (2004) Physical activity and atherosclerosis: which animal model? Can J Appl Physiol 29:657–683

    Article  PubMed  Google Scholar 

  • Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  PubMed  CAS  Google Scholar 

  • Vodicka P, Smetana K, Dvoránková B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlík J (2005) The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 1049:161–171

    Article  PubMed  Google Scholar 

  • Whitworth KM, Li R, Spate LD, Wax DM, Rieke A, Whyte JJ, Manandhar G, Sutovsky M, Green JA, Sutovsky P, Prather RS (2009) Method of oocyte activation affects cloning efficiency in pigs. Mol Reprod Dev 76:490–500

    Article  PubMed  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    Article  PubMed  CAS  Google Scholar 

  • Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F (2007) Important role of endogenous hydrogen peroxide in pacing-induced metabolic coronary vasodilation in dogs in vivo. J Am Coll Cardiol 50:1272–1278

    Article  PubMed  CAS  Google Scholar 

  • Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448:159–177

    PubMed  CAS  Google Scholar 

  • Zhao J, Ross JW, Hao Y, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS (2009) Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol Reprod 81:525–530

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Rodriguez-Porcel M, Bentley MD, Chade AR, Sica V, Napoli C, Caplice N, Ritman EL, Lerman A, Lerman LO (2004) Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation 109:2109–2115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by a grant from the NIH (R24 RR018276-05) to MHL and RSP. The Tie2-hCat plasmid was kindly provided by Dr. George Kojda and Thao-Vi Dao of the Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität, Düsseldorf, Germany. Members of the R. S. Prather Lab were particularly helpful: Dr. Clay Isom, August Rieke, Dr. Jason Ross, Lee Spate, Dave Wax, and Dr. Jianguo Zhao. We are grateful for the assistance provided by members of the M. H. Laughlin Lab, including Jennifer Casati, David Harah, Dr. Rick McAllister, Ann Melloh, and Pam Thorne. We also thank Joyce Carafa of the MU Immunology and Cytology Core who assisted with FACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Whyte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whyte, J.J., Samuel, M., Mahan, E. et al. Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Res 20, 989–1001 (2011). https://doi.org/10.1007/s11248-010-9473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9473-7

Keywords

Navigation