Skip to main content
Log in

Synthesis and structural elucidation of 1,2-naphthoquinone derivatives, Schiff base complexes and ternary complexes with 8-hydroxyquinoline: comparative studies of their antimicrobial, anti-inflammatory and anti-diabetic activities

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Herein, a new derivative of 1,2-naphthoquinone with semicarbazide and its Schiff base complexes and ternary complexes have been synthesized with some transition metals such as Ni(II), Co(II) and Zn(II) by using the conventional reflux method and 8-hydroxyquinoline (8-HQ) as a secondary ligand for ternary complexes. All the compounds were characterized using elemental analysis, molar conductance, melting point, Powder XRD, magnetic moment measurement and various spectral techniques such as FTIR, 13C NMR, 1H NMR, and Mass Spectra. The specific peak of the enolic proton in 1H NMR spectra of the tridentate ligand (L) explained the amido-iminol tautomerism in semicarbazone. In addition, powder XRD analysis and TGA confirmed the crystalline nature and the thermal study of metal chelates, respectively. In vitro, all the compounds were screened for antimicrobial (against bacterial strains: S. aureus and E. coli; Fungal strain: A. niger), anti-diabetic and anti-inflammatory activity with their obtained IC50 values and compared with Acarbose and Aspirin standard drugs. Bioactivities of azomethine containing free ligand (L), their Schiff base complexes and ternary metal chelates were compared to each other. Free Schiff base (L) was found most potent for all selective bioactivities compared to their all-metal complexes, except Ni (II) Schiff base complex showed excellent activity against C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mustafa G, Zia-ur-Rehman M, Sumrra SH, Ashfaq M, Zafar W, Ashfaq M (2022) J Mol Struct 1262:133044. https://doi.org/10.1016/j.molstruc.2022.133044

    Article  CAS  Google Scholar 

  2. Ali MR, Marella A, Alam MT, Naz R, Akhter M, Shaquiquzzaman M, Saha R, Tanwar O, Alam MM, Hooda J (2012) Indones J Pharm 23(3):193–202. https://doi.org/10.14499/indonesianjpharm23iss4pp193-202

    Article  Google Scholar 

  3. Noreen S, Sumrra SH (2021) ACS Omega 6(48):33085–33099. https://doi.org/10.1021/acsomega.1c05290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gomathi T, Karthik S, Vedanayaki S (2021) Indian J Chem 60A:26–36

    CAS  Google Scholar 

  5. Bahron H, Khaidir SS, Tajuddin AM, Ramasamy K, Yamin BM (2019) Polyhedron 161:84–92. https://doi.org/10.1016/j.poly.2018.12.055

    Article  CAS  Google Scholar 

  6. Sumrra SH, Zafar W, Javed H, Zafar M, Hussain MZ, Imran M, Nadeem MA (2021) Biometals 34:1329–1351. https://doi.org/10.1007/s10534-021-00345-6

    Article  CAS  PubMed  Google Scholar 

  7. Canpolat E, Kaya M (2005) J Coord Chem 58:1063–1069. https://doi.org/10.1080/00958970500122565

    Article  CAS  Google Scholar 

  8. Sumrra SH, Zafar W, Imran M, Chohan ZH (2022) J Coord Chem 75(3–4):293–334. https://doi.org/10.1080/00958972.2022.2059359

    Article  CAS  Google Scholar 

  9. Sumrra SH, Mushtaq F, Ahmad F, Hussain R, Zafar W, Imran M, Zafar MN (2022) Chem Pap 76:3705–3727. https://doi.org/10.1007/s11696-022-02123-1

    Article  CAS  Google Scholar 

  10. Rani S, Sumrra SH, Chohan ZH (2017) Russ J Gen Chem 87:1834–1842. https://doi.org/10.1134/S107036321708031X

    Article  CAS  Google Scholar 

  11. Noreen S, Sumrra SH (2022) Biometals 35:519–548. https://doi.org/10.1007/s10534-022-00385-6

    Article  CAS  PubMed  Google Scholar 

  12. Basuli F, Ruf M, Pierpont CG, Bhattacharya S (1998) Inorg Chem 37(23):6113–6116. https://doi.org/10.1021/ic980424i

    Article  CAS  PubMed  Google Scholar 

  13. Farrell N (2002) Coord Chem Rev 232:1–4. https://doi.org/10.1016/S0010-8545(02)00100-5

    Article  CAS  Google Scholar 

  14. Asif M, Husain A (2013) J Appl Chem 2013:1–7. https://doi.org/10.1155/2013/247203

    Article  CAS  Google Scholar 

  15. Reis DC, Despaigne AAR, Da Silva JG, Silva NF, Vilela CF, Mendes IC, Takahashi JA, Beraldo H (2013) Molecules 18(10):12645–12662. https://doi.org/10.3390/molecules181012645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Singhal M, Paul A, Singh HP, Dubey SK, Songara PK (2011) Inter J Pharma Sci Drug Res 3(2):150–154

    CAS  Google Scholar 

  17. Živković MB, Novaković IT, Matić IZ, Sladić DM, Krstić NM (2019) Steroids 148:36–46. https://doi.org/10.1016/j.steroids.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Raj V (2013) Inter J Phytother 3(2):37–46

    Google Scholar 

  19. Singh HL, Singh JB, Bhaunka S (2016) J Coord Chem 69:343–353. https://doi.org/10.1080/00958972.2015.1115485

    Article  CAS  Google Scholar 

  20. Liu H (2011) Traditional herbal medicine research methods. John Wiley & Sons

    Book  Google Scholar 

  21. Pardee AB, Li YZ, Li CJ (2002) Curr Cancer Drug Targets 2:227–242. https://doi.org/10.2174/1568009023333854

    Article  CAS  PubMed  Google Scholar 

  22. Li CJ, Zhang LJ, Dezubw BJ, Crumpacker CS, Pardee AB (1993) Proc Natl Acad Sci USA 90:1839–1842. https://doi.org/10.1073/pnas.90.5.1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Afrasiabi Z, Sinn E, Chen J, Ma Y, Rheingold AL, Zakharov LN, Rath N, Padhye S (2004) Inorg Chim Acta 357:271–278. https://doi.org/10.1016/S0020-1693(03)00484-5

    Article  CAS  Google Scholar 

  24. Planchon SM, Wuerzberger S, Frydman B, Witiak DT, Hutson P, Church DR, Wilding G, Boothman DA (1995) Cancer Res 55:3706–3711

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Shukla S, Srivastava RS, Shrivastava SK, Sodhi A, Kumar P (2013) J Enzyme Inhib Med Chem 28:1192–1198. https://doi.org/10.3109/14756366.2012.721783

    Article  CAS  PubMed  Google Scholar 

  26. Boothman DA, Trask DK, Pardee AB (1989) Cancer Res 49:605–612

    CAS  PubMed  Google Scholar 

  27. Mahalapbutr P, Chusuth P, Kungwan N, Chavasiri W, Wolschann P, Rungrotmongkol T (2017) J Mol Liq 247:374–385. https://doi.org/10.1016/j.molliq.2017.10.021

    Article  CAS  Google Scholar 

  28. Gomathi T, Karthik S, Vedanayaki S (2021) Ind J Chem 60A:26–36

    CAS  Google Scholar 

  29. Neelakantan MA, Marriappan SS, Dharmaraja J, Jeyakumar T, Muthuku-maran K (2008) Spectrochim Acta A Mol Biomol Spectrosc 71:628–635. https://doi.org/10.1016/j.saa.2008.01.023

    Article  CAS  PubMed  Google Scholar 

  30. Radha VP, Chitra S, Jonekirubavathi S, Chung IM, Kim SH, Prabakaran M (2020) J Coord Chem 73:1009–1027. https://doi.org/10.1080/00958972.2020.1752372

    Article  CAS  Google Scholar 

  31. Shebl M, Adly OMI, Taha A, Elabd NN (2017) J Mol Struct 1147:438–451. https://doi.org/10.1016/j.molstruc.2017.06.085

    Article  CAS  Google Scholar 

  32. Rajaa G, Butcher RJ, Jayabalakrishnan C (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 94:210–215. https://doi.org/10.1016/j.saa.2012.03.035

    Article  Google Scholar 

  33. Szklarzewicz J, Jurowska A, Hodorowicz M, Kazek G, Menaszek MEM, Sapa J (2021) Trans Met Chem 46:201–217. https://doi.org/10.1007/s11243-020-00437-1

    Article  CAS  Google Scholar 

  34. Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN (1999) Fitoterapia 70:251–257. https://doi.org/10.1016/S0367-326X(99)00030-1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Department of Chemistry, University of Rajasthan, Jaipur, is gratefully acknowledged by all authors for its assistance and provision of research facilities. Also, we appreciate the Microbiology laboratory, SMS Medical College Jaipur, for biological investigations and MNIT, Jaipur, for spectral techniques and PXRD.

Author information

Authors and Affiliations

Authors

Contributions

Author Seema wrote the main manuscript text and Shobhana Sharma, Poonam Yadav and Suman Kumari contributed to data interpretation. All authors including corresponding author reviewed the manuscript.

Corresponding author

Correspondence to Mamta Ranka.

Ethics declarations

Conflict of interest

It is stated by the authors that they have no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7684 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seema, Sharma, S., Yadav, P. et al. Synthesis and structural elucidation of 1,2-naphthoquinone derivatives, Schiff base complexes and ternary complexes with 8-hydroxyquinoline: comparative studies of their antimicrobial, anti-inflammatory and anti-diabetic activities. Transit Met Chem 48, 389–400 (2023). https://doi.org/10.1007/s11243-023-00551-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00551-w

Navigation