Skip to main content
Log in

Synthesis and catalase-like activity of dimanganese complexes with phthalazine-based ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Dimanganese complexes Mn2 III(L1)(OAc)4 and Mn2 III(L2)(OAc)4 with the phthalazine-based ligands 1,4-di(2′-benzimidazolyl)aminophthalazine (H2L1) and 1,4-di(N-methyl-2′-benzimidazolyl)aminophthalazine (H2L2) have been prepared and characterized. The complexes accelerate the disproportionation of H2O2 into water and dioxygen in buffered aqueous solutions in a near-neutral pH range thus can be regarded as catalase models. Results of kinetic measurements indicate a similar mechanism for the two catalysts, but formation of the proposed peroxo-adduct intermediate is less favored for Mn2 III(L1)(OAc)4. It is presumed to be the reason for the lower rates for this catalyst even at higher pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Nicholls P, Schonbaum GR (1963) Catalases. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, vol VIII, 2nd edn. Academic Press, New York, p 147

    Google Scholar 

  2. Halliwell B, Gutteridge JMC (1990) Method Enzymol 186:1

    Article  Google Scholar 

  3. Stadtman ER, Berlett PB, Chock PB (1990) Proc Natl Acad Sci USA 87:384

    Article  CAS  Google Scholar 

  4. Messerschmidt A, Huber R, Paulos T, Wieghardt K (eds) (2001) Handbook of metalloproteins. Wiley, New York

  5. Barynin VV, Grebenko AI (1986) Dokl Acad Nauk SSSR 286:461

    CAS  Google Scholar 

  6. Allgood GS, Perry JJ (1986) J Bacteriol 168:563

    CAS  Google Scholar 

  7. Kono Y, Fridovich I (1983) J Biol Chem 258:6015

    CAS  Google Scholar 

  8. Beyer WF, Fridovich I (1985) Biochemistry 24:6460

    Article  CAS  Google Scholar 

  9. Antonyuk SV, Melik-Adamyan VR, Popov AN, Lamzin VS, Hempstead PD, Harrison PM, Artymiuk PJ, Barynin VV (2000) Crystallogr Rep 45:105

    Article  Google Scholar 

  10. Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ, Whittaker JW (2001) Structure 9:725

    Article  CAS  Google Scholar 

  11. Dismukes GC (1996) Chem Rev 96:2909

    Article  CAS  Google Scholar 

  12. Riley DP, Schall OF (2006) Adv Inorg Chem 59:233

    Article  Google Scholar 

  13. Pap JS, Kripli B, Váradi T, Giorgi M, Kaizer J, Speier G (2011) J Inorg Biochem 105:911

    Article  CAS  Google Scholar 

  14. Thompson LK, Chaco VT, Elvidge JA, Lever ABP, Parish RV (1969) Can J Chem 47:4141

    Article  CAS  Google Scholar 

  15. Balogh-Hergovich É, Speier G, Réglier M, Giorgi M, Kuzmann E, Vértes A (2004) Inorg Chim Acta 357:3689

    Article  CAS  Google Scholar 

  16. Pap JS, Kaizer J, Giorgi M, Speier G (2010) Inorg Chem Commun 13:1069

    Article  CAS  Google Scholar 

  17. Lever ABP, Thompson LK, Reiff WM (1972) Inorg Chem 11:104

    Article  CAS  Google Scholar 

  18. Thompson LK, Hartstock FW, Rosenberg L, Woon TC (1985) Inorg Chim Acta 97:1

    Article  CAS  Google Scholar 

  19. Deacon GB, Philips RJ (1980) Coord Chem Rev 33:227

    Article  CAS  Google Scholar 

  20. Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903

    Article  CAS  Google Scholar 

  21. Shank M, Barynin V, Dismukes GC (1994) Biochemistry 33:15433

    Article  CAS  Google Scholar 

  22. JE Penner-Hahn (1992) Structural properties of the manganese site in the manganese catalases. In: VL Pecoraro (ed) Manganese redox enzymes. VCH Publishers, New York

  23. Allgood GS, Perry JJ (1986) J Bacteriol 168:563

    CAS  Google Scholar 

  24. Larson EJ, Pecoraro VL (1991) J Am Chem Soc 113:3810

    Article  CAS  Google Scholar 

  25. Larson EJ, Pecoraro VL (1991) J Am Chem Soc 113:7809

    Article  CAS  Google Scholar 

  26. Gelasco A, Bensiek S, Pecoraro VL (1998) Inorg Chem 37:3301

    Article  CAS  Google Scholar 

  27. Kaizer J, Csay T, Kövári P, Speier G, Párkányi L (2008) J Mol Catal A 280:203

    Article  CAS  Google Scholar 

  28. U Bossek,M Saher, T Weyhermüller, K Wieghardt (1992) J Chem Soc Chem Commun 1780

  29. Biava H, Palopoli C, Shova S, De Gaudio M, Daier V, Gonzalez-Sierra M, Tuchagues J-P, Signorella S (2006) J Inorg Biochem 100:1660

    Article  CAS  Google Scholar 

  30. Gelasco A, Pecoraro VL (1993) J Am Chem Soc 115:7928

    Article  CAS  Google Scholar 

  31. Signorella S, Rompel A, Büldt-Karentzopoulos K, Krebs B, Pecoraro VL, Tuchagues J-P (2007) Inorg. Chem. 46:10864

    Article  CAS  Google Scholar 

  32. Kaizer J, Baráth G, Speier G, Réglier M, Giorgi M (2007) Inorg Chem Commun 10:292

    Article  CAS  Google Scholar 

  33. Naruta Y, Maruyama K (1991) J Am Chem Soc 113:3595

    Article  CAS  Google Scholar 

  34. Kaizer J, Csonka R, Speier G (2008) React Kinet Catal Lett 94:157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Hungarian National Research Fund (OTKA K67871, OTKA K75783, and OTKA PD75360) and COST is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Kaizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pap, J.S., Horváth, B., Speier, G. et al. Synthesis and catalase-like activity of dimanganese complexes with phthalazine-based ligands. Transition Met Chem 36, 603–609 (2011). https://doi.org/10.1007/s11243-011-9508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9508-9

Keywords

Navigation