Skip to main content
Log in

Crystal structure and biological activities of water-soluble nickel(II) and copper(II) complexes of a Schiff-base derived from paeonol

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Water-soluble Ni(II) and Cu(II) complexes of a flexible Schiff-base ligand have been synthesized, and the Ni(II) complex was characterized by X-ray crystallography. The interactions of the two complexes with calf thymus DNA were investigated by spectroscopic and viscosity measurements in water. The results suggest that the two complexes bind to DNA within the groove. Antioxidant experiments against OH and O −•2 show that these two complexes have excellent ability to scavenge O −•2 , and the Cu(II) complex exhibits better activity than the Ni(II) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azza AA (2006) J Coord Chem 59:157. doi:10.1080/00958970500266230

    Article  CAS  Google Scholar 

  2. Karthikeyan MS, Parsad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS (2006) Bioorg Med Chem 14:7482. doi:10.1016/j.bmc.2006.07.015

    Article  CAS  Google Scholar 

  3. Singh K, Barwa MS, Tyagi P (2006) Eur J Med Chem 41:147. doi:10.1016/j.ejmech.2005.06.006

    Article  CAS  Google Scholar 

  4. Yu HX, Ma JF, Xu GH, Li SL, Yang J, Liu YY, Cheng YX (2006) J Organomet Chem 691:3531. doi:10.1016/j.jorganchem.2006.05.002

    Article  CAS  Google Scholar 

  5. Turan-Zitouni G, Asim-Kaplanciki Z, Taha-Yildiz M, Chevallet P, Kaya D (2005) Eur J Med Chem 40:607. doi:10.1016/j.ejmech.2005.01.007

    Article  CAS  Google Scholar 

  6. Lei S, Ge HM, Tan SH, Li HQ, Song YC, Zhu HL, Tan RX (2007) Eur J Med Chem 42:558. doi:10.1016/j.ejmech.2006.11.010

    Article  CAS  Google Scholar 

  7. Zhao XX, Lee PeterPeng-Foo, Yan YK, Chu CK (2007) J Inorg Biochem 101:321. doi:10.1016/j.jinorgbio.2006.10.005

    Article  CAS  Google Scholar 

  8. Cerchiaro G, Aquilano K, Filomeni G, Rotilio G, Ciriolo MR, Ferreira AMDC (2005) J Inorg Biochem 99:1433. doi:10.1016/j.jinorgbio.2005.03.013

    Article  CAS  Google Scholar 

  9. Akitsu T, Einaga Y (2006) Polyhedron 25:1089. doi:10.1016/j.poly.2005.07.048

    Article  CAS  Google Scholar 

  10. Akitsu T, Einaga Y (2005) Polyhedron 24:2933. doi:10.1016/j.poly.2005.06.018

    Article  CAS  Google Scholar 

  11. Akitsu T, Einaga Y (2005) Polyhedron 24:1869. doi:10.1016/j.poly.2005.06.019

    Article  CAS  Google Scholar 

  12. Wu XA, Chen HL, Chen XG, Hu ZD (2003) Biomed Chromatogr 17:504. doi:10.1002/bmc.259

    Article  CAS  Google Scholar 

  13. Chou TC (2003) Br J Pharmacol 139:1146. doi:10.1038/sj.bjp.0705360

    Article  CAS  Google Scholar 

  14. Kim SH, Kim SA, Park MK, Park YD, Na HJ, Kim HM, Shin MK, Ahn KS (2004) Int Immunopharmacol 4:279. doi:10.1016/j.intimp.2003.12.013

    Article  CAS  Google Scholar 

  15. Liu M, Zhu LY, Qu XK, Sun DZ, Li LW, Lin RS (2007) J Chem Thermodyn 39:1565. doi:10.1016/j.jct.2007.05.003

    Article  CAS  Google Scholar 

  16. Zuber G, Quada JC, Hecht SM (1998) J Am Chem Soc 120:9368. doi:10.1021/ja981937r

    Article  CAS  Google Scholar 

  17. Hecht SM (2000) J Nat Prod 63:158. doi:10.1021/np990549f

    Article  CAS  Google Scholar 

  18. Wu BY, Gao LH, Duan ZM, Wang KZ (2005) J Inorg Biochem 99:1685. doi:10.1016/j.jinorgbio.2005.05.012

    Article  CAS  Google Scholar 

  19. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777. doi:10.1021/cr9804341

    Article  CAS  Google Scholar 

  20. Metcalfe C, Thomas JA (2003) Chem Soc Rev 32:215. doi:10.1039/b201945k

    Article  CAS  Google Scholar 

  21. Xiong Y, Ji LN (1999) Coord Chem Rev 185:711. doi:10.1016/S0010-8545(99)00019-3

    Article  Google Scholar 

  22. Wang SW, Li ZF, Wang XT, Yu XJ (2008) Acta Cryst Sect E 64:m1193. doi:10.1107/S1600536808021880

    Article  CAS  Google Scholar 

  23. Marmur J (1961) J Mol Biol 3:208

    Article  CAS  Google Scholar 

  24. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8547. doi:10.1021/ja00072a004

    Article  CAS  Google Scholar 

  25. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047. doi:10.1021/ja01640a067

    Article  CAS  Google Scholar 

  26. Sheldrick GM (1997) SHELXL-97 and SHELXS-97. University of Göttingen, Göttingen, Germany

    Google Scholar 

  27. Satyanarayana S, Dabroniak JC, Chaires JB (1992) Biochemistry 31:9319. doi:10.1021/bi00154a001

    Article  CAS  Google Scholar 

  28. Cohen G, Eisenberg H (1969) Biopolymers 8:45. doi:10.1002/bip.1969.360080105

    Article  CAS  Google Scholar 

  29. Skandrani I, Bouhlel I, Limen I, Boubaker J, Bhouri W, Neffati A, Ben Sghaier M, Kilani S, Chedira K, Chedira-Chekir L (2009) Toxicol In Vitro 23:166. doi:10.1016/j.tiv.2008.10.010

    Article  CAS  Google Scholar 

  30. Fox KR (1997) Drug–DNA interaction protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  31. Chaires JB (2001) Drug–nucleic acid interactions. Academic Press, New York

    Google Scholar 

  32. Tan LF, Chao HY, Liu J, Li H, Sun B, Ji LN (2005) Inorg Chim Acta 358:2191. doi:10.1016/j.ica.2004.10.030

    Article  CAS  Google Scholar 

  33. Wilson WD (1990) Nucleic acids in chemistry and biology, Chap 8. IRL Press, New York, p 297

    Google Scholar 

  34. Wilson WD (1982) Intercalation chemistry, Chap 14. Academic Press, New York, p 445

    Google Scholar 

  35. Denny WA, Baguley B (1994) In: Neidle S, Warning M (eds) Molecular aspects of anti-cancer drug–DNA interaction. Macmillan, London

    Google Scholar 

  36. Waring MJ (1981) Ann Rev Biochem 50:159. doi:10.1146/annurev.bi.50.070181.001111

    Article  CAS  Google Scholar 

  37. Wilson WD (1990) In: Blackburn GM, Gait M (eds) Nucleic acids in chemistry and biology. IRL Press, Oxford, pp 295–336

    Google Scholar 

  38. Suh D, Chairs JB (1995) Bioorg Med Chem 3:723. doi:10.1016/0968-0896(95)00053-J

    Article  CAS  Google Scholar 

  39. Sundquist WI, Lippard S (1990) J Coord Chem Rev 100:293. doi:10.1016/0010-8545(90)85013-I

    Article  CAS  Google Scholar 

  40. Yadav RC, Kumar GS, Bhadra K, Giri P, Sinha R, Pal S, Maiti M (2005) Bioorg Med Chem 13:165. doi:10.1016/j.bmc.2004.09.045

    Article  CAS  Google Scholar 

  41. Yang G, Wu FZ, Wang L, Tina X (1997) J Inorg Biochem 66:141. doi:10.1016/S0162-0134(96)00194-8

    Article  CAS  Google Scholar 

  42. Wang XL, Chao H, Li H, Hong XL, Liu YJ, Tan LF, Ji LN (2004) J Inorg Biochem 98:1143. doi:10.1016/j.jinorgbio.2004.04.003

    Article  CAS  Google Scholar 

  43. Kumar CV, Turner RS, Asuncion EH (1993) J Photochem Photobiol A 74:231. doi:10.1016/1010-6030(93)80121-O

    Article  CAS  Google Scholar 

  44. Wang Q, Wang Y, Yang ZY (2008) Chem Pharm Bull 56:1018. doi:10.1248/cpb.56.1018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (20475023) and Gansu NSF (0710RJZA012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, DD., Yang, ZY., Qi, GF. et al. Crystal structure and biological activities of water-soluble nickel(II) and copper(II) complexes of a Schiff-base derived from paeonol. Transition Met Chem 34, 499–505 (2009). https://doi.org/10.1007/s11243-009-9222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9222-z

Keywords

Navigation