Skip to main content
Log in

Phosphate-hydrolysis, antioxidant, DNA binding, and nuclease activities promoted by heteroleptic nickel(II) phenolate complexes

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Eight heteroleptic nickel(II) complexes of the type [NiL1–4(co-ligand)] 18, where L1–4 = N 1,N 2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylene diimine and co-ligand = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been synthesized and fully characterized by analytical and spectral methods. The six-coordinated octahedral geometry around the nickel(II) center was inferred from the electronic spectra of the complexes. Cyclic voltammetric studies of the complexes evidenced one-electron irreversible nature of reduction and oxidation process. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate are in the range of 0.24–2.53 × 10−2 min−1. The obtained room temperature magnetic moment values (2.96–3.31 BM) lies within the range observed for octahedral nickel(II) complexes. Antioxidant studies suggest the considerable radical-scavenging potency of the complexes against DPPH radical. The DNA-binding studies of complexes with calf thymus DNA revealed intercalation with minor-groove mode of binding. The nuclease activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species and complexes encourage binding to minor-groove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainscough EW, Brodie AM, Ranford JD, Waters JE, (1997) Reaction of anionic oxygen donors with the antitumour copper(II)–pyridine-2-carbaldehydethiosemicarbazone (HL) system and the crystal structure of [{Cu(HL)(H2PO4)}2][H2PO4]2·2H3PO4·2H2O. J Chem Sci Dalton Trans 1251–1256. doi:10.1039/A607476F

  • Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562

    Article  CAS  Google Scholar 

  • An Y, Liu SD, Deng SY, Ji LN, Mao ZW (2006) Cleavage of double-strand DNA by linear and triangular trinuclear copper complexes. J Inorg Biochem 100:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Barone G, Terenzi A, Lauria A, Almerico AM, Leal JM, Busto N, García B (2013) DNA-binding of nickel(II), copper(II) and zinc(II) complexes: structure-affinity relationships. Coord Chem Rev 257:2848–2862

    Article  CAS  Google Scholar 

  • Benzekri A, Dubourdeaux P, Latour JM, Rey P, Laugier J (1991) Binuclear copper(II) complexes of a new sulphur-containing binucleating ligand: structural and physicochemical properties. J Chem Soc Dalton Trans 12:3359–3365

    Article  Google Scholar 

  • Bischoff G, Hoffmann S (2002) DNA-binding of drugs used in medicinal therapies. Curr Med Chem 9:321–348

    Article  CAS  Google Scholar 

  • Boerner LJK, Zaleski JM (2005) Metal complex-DNA interactions: from transcription inhibition to photoactivated cleavage. Curr Opin Chem Biol 9:135–144

    Article  CAS  PubMed  Google Scholar 

  • Brabec V, Nováková O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drugs Resist Updates 9:111–122

    Article  CAS  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    Article  CAS  PubMed  Google Scholar 

  • Carter MT, Bard AJ (1987) Voltammetric studies of the interaction of tris(1,10- phenanthroline)cobalt(III) with DNA. J Am Chem Soc 109:7528–7532

    Article  CAS  Google Scholar 

  • Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  • Casassas E, Izquierdo-Ridora A, Tauler R (1990) Electron paramagnetic resonance and visible spectroscopic studies of mixed-ligand complexes of copper(II) ion, salicylate ion, and a nitrogen base in aqueous solution. J Chem Soc Dalton Trans 8:2341–2345

    Article  Google Scholar 

  • Chao H, Mei WJ, Huang QW, Ji LN (2002) DNA binding studies of ruthenium(II) complexes containing asymmetric tridentate ligands. J Inorg Biochem 92:165–170

    Article  CAS  PubMed  Google Scholar 

  • Chen HL, Liu HQ, Tzeng BC, You YS, Peng SM, Yang M, Che CM (2002) Syntheses of ruthenium(II) quinonediimine complexes of cyclam and characterization of their DNA-binding activities and cytotoxicity. Inorg Chem 41:3161–3171

    Article  Google Scholar 

  • Cohen G, Eisenberg H (1969) Viscosity and sedimentation study of sonicated DNA– proflavine complexes. Biopolymers 8:45–55

    Article  CAS  Google Scholar 

  • Cory M, Mckee DD, Kagan J, Henry DW, Miller JA (1985) Design, synthesis, and DNA binding properties of bifunctional intercalators. Comparison of polymethylene and diphenyl ether chains connecting phenanthridine. J Am Chem Soc 107:2528–2536

    Article  CAS  Google Scholar 

  • Cuendet M, Hostettmann K, Potterat O (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1152

    Article  CAS  Google Scholar 

  • Desbouis D, Troitsky IP, Belousoff MJ, Spiccia L, Graham B (2012) Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coord Chem Rev 256:897–937

    Article  CAS  Google Scholar 

  • Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J Am Chem Soc 112:4960–4962

    Article  CAS  Google Scholar 

  • Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  • Genc ZK, Selcuk S, Sandal S, Colak N, Keser S, Sekerci M, Karatepe M (2014) Spectroscopic, antiproliferative and antiradical properties of Cu(II), Ni(II), and Zn(II) complexes with amino acid based Schiff bases. Med Chem Res 23:2476–2485

    Article  Google Scholar 

  • Gurumoorthy P, Mahendiran D, Prabhu D, Arulvasu C, Kalilur Rahiman A (2015) Mixed- ligand copper(II) phenolate complexes: synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies. J Mol Struct 1080:88–98

    Article  CAS  Google Scholar 

  • Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR (2010) Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: identification of pronounced redox activity and characterization of their antitumor activity. J Med Chem 53:5759–5769

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Cowan JA (2005) DNA cleavage by copper-ATCUN complexes. Factors influencing cleavage mechanism and linearization of dsDNA. J Am Chem Soc 127:8408–8415

    Article  CAS  PubMed  Google Scholar 

  • Kamatchi TS, Chitrapriya N, Kim SK, Fronczek FR, Natarajan K (2013) Influence of carboxylic acid functionalities in ruthenium(II) polypyridyl complexes on DNA binding, cytotoxicity and antioxidant activity: synthesis, structure and in vitro anticancer activity. Eur J Med Chem 59:253–264

    Article  Google Scholar 

  • Kostova I (2005) Lanthanides as anticancer agents. Curr Med Chem Anti Cancer Agents 5:591–602

    Article  CAS  Google Scholar 

  • Kurdehar GS, Puttanagouda SM, Kulkarni NV, Budagumbi S, Revankar VK (2011) Synthesis, characterization, antibiogram and DNA binding studies of novel Co(II), Ni(II), Cu(II), and Zn(II) complexes of Schiff base ligands with quinoline core. Med Chem Res 20:421–429

    Article  Google Scholar 

  • Leng F, Chairs JB, Waring MJ (2003) Energetics of echinomycin binding to DNA. Nucleic Acids Res 31:6191–6197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  • Liu C, Yu S, Li D, Liao Z, Sun X, Xu H (2002) DNA hydrolytic cleavage by the diiron(III) complex Fe2(DTPB)(μ-O)(μ-Ac)Cl(BF4)2: comparison with other binuclear transition metal complexes. Inorg Chem 41:913–922

    Article  CAS  PubMed  Google Scholar 

  • MacLachlan MJ, Park MK, Thompson LK (1996) Coordination compounds of Schiff-base ligands derived from diaminomaleonitrile (DMN): mononuclear, dinuclear and macrocyclic derivatives. Inorg Chem 35:5492–5499

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan S, Palaniandavar M (1996) Chiral discrimination in the binding of tris(phenanthroline)ruthenium(II) to calf thymus DNA: an electrochemical study. Bioconjugate Chem 7:138–143

    Article  CAS  Google Scholar 

  • Maity B, Roy M, Saha S, Chakravarty AR (2009) Photoinduced DNA and protein cleavage activity of ferrocene-conjugated ternary copper(II) complexes. Organometallics 28:1495–1505

    Article  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Nair RB, Tang ES, Kirkland SL, Murphy CJ (1998) Synthesis and DNA-binding properties of [Ru(NH3)4d ppz]2+. Inorg Chem 37:139–141

    Article  CAS  PubMed  Google Scholar 

  • Raman N, Mahalakshmi R (2014) Bio active mixed ligand complexes of Cu(II), Ni(II) and Zn(II): synthesis, spectral, XRD, DNA binding and cleavage properties. Inorg Chem Commun 40:157–163

    Article  CAS  Google Scholar 

  • Ravichandran J, Gurumoorthy P, Imran Musthafa MA, Kalilur Rahiman A (2014) Antioxidant, DNA binding and nuclease activities of heteroleptic copper(II) complexes derived from 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols and diimines. Spectrochim Acta A 133:785–793

    Article  CAS  Google Scholar 

  • Reddy PAN, Nethaji M, Chakravarty AR (2004) Hydrolytic cleavage of DNA by ternary amino acid Schiff base copper(II) complexes having planar heterocyclic ligands. Eur J Inorg Chem 7:1440–1446

    Article  Google Scholar 

  • Reichmann R, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  • Rey NA, Neves A, Bortoluzzi AJ, Pich CT, Terenzi H (2007) Catalytic promiscuity in biomimetic systems: catecholase-like activity, phosphatase-like activity, and hydrolytic DNA cleavage promoted by a new dicopper(II) hydroxo-bridged complex. Inorg Chem 46:348–350

    Article  CAS  PubMed  Google Scholar 

  • Sammes PG, Yahioglu G (1994) 1,10-Phenanthroline: a versatile ligand. Chem Soc Rev 23:327–334

    Article  CAS  Google Scholar 

  • Sankaran M, Kumarasamy C, Chokkalingam U, Mohan PS (2010) Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acylquinolin-2-one. Bioorg Med Chem Lett 20:7147–7151

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither.DELTA.- nor.LAMBDA.- tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324

    Article  CAS  PubMed  Google Scholar 

  • Sreedhara A, Cowan JD (1998) Efficient catalytic cleavage of DNA mediated by metalloaminoglycosides. Chem Commun 16:1737–1738

    Article  Google Scholar 

  • Summers LA (1978) The phenanthrolines. Adv Heterocycl Chem 22:1–69

    CAS  Google Scholar 

  • Tan J, Wang B, Zhu L (2009) DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. Bioorg Med Chem 17:614–620

    Article  CAS  PubMed  Google Scholar 

  • Terenzi A, Bonsignore R, Spinello A, Gentile C, Martorana A, Ducani C, Högberg B, Almerico AM, Lauria A, Barone G (2014) Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity. RSC Adv 4:33245–33256

    Article  CAS  Google Scholar 

  • Tsai K, Hsu TG, Hsu KM, Cheng H, Liu TY, Hsu CF, Kong CW (2001) Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radical Biol Med 31:1465–1472

    Article  CAS  Google Scholar 

  • Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K (2007) Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 101:267–273

    Article  CAS  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  • Verquin G, Fontaine G, Bria M, Zhilinskaya E, Abi-Aad E, Aboukaïs A, Baldeyrou B, Bailly C, Bernier JL (2004) DNA modification by oxovanadium(IV) complexes of salen derivatives. J Biol Inorg Chem 9:345–353

    Article  CAS  PubMed  Google Scholar 

  • Wang BD, Yang ZY, Crewdson P, Wang DQ (2007) Synthesis, crystal structure and DNA-binding studies of the Ln(III) complex with 6-hydroxychromone-3-carbaldehyde benzoyl hydrazone. J Inorg Biochem 101:1492–1504

    Article  CAS  PubMed  Google Scholar 

  • Witkop B, Ramachandran LK (1964) Progress in non-enzymatic selective modification and cleavage of proteins. Metabolism 13:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Yola ML, Özaltın N (2011) Electrochemical studies on the interaction of an antibacterial drug nitrofurantoin with DNA. J Electroanal Chem 653:56–60

    Article  CAS  Google Scholar 

  • Zampakou M, Akrivou M, Andreadou EG, Raptopoulou CP, Psycharis V, Pantazaki AA, Psomas G (2013) Structure, antimicrobial activity, DNA- and albumin-binding of manganese(II) complexes with the quinolone antimicrobial agents oxolinic acid and enrofloxacin. J Inorg Biochem 121:88–99

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu J, Chao H, Xue G, Ji L (2001) DNA-binding and photo cleavage studies of cobalt(III) polypyridyl complexes: [Co(phen)2IP]3+ and [Co(phen)2PIP]3+. J Inorg Biochem 83:49–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to IIT-M, Chennai, for ESI mass spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Kalilur Rahiman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurumoorthy, P., Rahiman, A.K. Phosphate-hydrolysis, antioxidant, DNA binding, and nuclease activities promoted by heteroleptic nickel(II) phenolate complexes. Med Chem Res 24, 2441–2453 (2015). https://doi.org/10.1007/s00044-014-1306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1306-4

Keywords

Navigation