Skip to main content

Advertisement

Log in

Role of cerebral microbleeds in acute ischemic stroke and atrial fibrillation

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Cerebral microbleeds (CMBs) are commonly detected in the brains of patients with acute ischemic stroke (AIS). With the development of neuroimaging, clinicians are paying more attention to the presence of CMBs. CMBs were found to significantly increase the risk of intracranial hemorrhagic transformation and hemorrhage in patients with AIS, especially in patients with concurrent atrial fibrillation (AF). Additionally, the presence of CMBs is thought to be a symbol of a high risk of recurrent ischemic stroke (IS). A few researchers have found that the presence of CMBs has no significant effect on the prognosis of patients with AIS. Therefore, the current views on the role of CMBs in the prognoses of patients with IS are controversial. The use of anticoagulants and other drugs has also become a dilemma due to the special influence of CMBs on the prognosis of these patients. Due to the large number of patients with AF and CMBs, many studies have been conducted on the effects of CMBs on these patients and subsequent pharmacological treatments. However, at present, there are no relevant guidelines to guide the secondary preventive treatment of patients with stroke, CMBs, and AF. In this paper, we summarized the role of CMBs in AIS combined with AF and relevant preventive measures against the recurrence of stroke and the occurrence of intracerebral hemorrhage to help clarify the specifics of drug therapies for this group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kolominsky-Rabas PL et al (2001) Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32(12):2735–2740

    Article  CAS  PubMed  Google Scholar 

  2. White H et al (2005) Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan study. Circulation 111(10):1327–1331. https://doi.org/10.1161/01.Cir.0000157736.19739.D0

    Article  PubMed  Google Scholar 

  3. Paciaroni M et al (2015) Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study. Stroke 46(8):2175–2182

    Article  CAS  PubMed  Google Scholar 

  4. Freeman WD, Aguilar MI (2008) Management of warfarin-related intracerebral hemorrhage. Expert Rev Neurother 8(2):271–290. https://doi.org/10.1586/14737175.8.2.271

    Article  CAS  PubMed  Google Scholar 

  5. Chen G et al (2016) Frequency and risk factors of spontaneous hemorrhagic transformation following ischemic stroke on the initial brain CT or MRI: data from the China national stroke registry (CNSR). Neurol Res 38(6):538–544. https://doi.org/10.1080/01616412.2016.1187864

    Article  PubMed  Google Scholar 

  6. Paciaroni M et al (2019) Causes and risk factors of cerebral ischemic events in patients with atrial fibrillation treated with non-vitamin K antagonist oral anticoagulants for stroke prevention. Stroke 50(8):2168–2174. https://doi.org/10.1161/strokeaha.119.025350

    Article  CAS  PubMed  Google Scholar 

  7. Lee SH, Ryu WS, Roh JK (2009) Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology 72(2):171–176

    Article  CAS  PubMed  Google Scholar 

  8. Song TJ et al (2013) The frequency of cerebral microbleeds increases with CHADS(2) scores in stroke patients with non-valvular atrial fibrillation. Eur J Neurol 20(3):502–508. https://doi.org/10.1111/ene.12003

    Article  PubMed  Google Scholar 

  9. Rydén L et al (2021) Atrial fibrillation, stroke, and silent cerebrovascular disease: a population-based MRI study. Neurology 97(16):e1608. https://doi.org/10.1212/wnl.0000000000012675

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yiin GS et al (2014) Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: a population-based study. Circulation 130(15):1236–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haller S et al (2018) Cerebral microbleeds: imaging and clinical significance. Radiology 287(1):11–28. https://doi.org/10.1148/radiol.2018170803

    Article  PubMed  Google Scholar 

  12. Greenberg SM et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174. https://doi.org/10.1016/s1474-4422(09)70013-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Song TJ et al (2014) The distribution of cerebral microbleeds determines their association with arterial stiffness in non-cardioembolic acute stroke patients. Eur J Neurol 21(3):463–469

    Article  CAS  PubMed  Google Scholar 

  14. Song TJ et al (2014) Distribution of cerebral microbleeds determines their association with impaired kidney function. J Clin Neurol 10(3):222–228

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song TJ et al (2015) Low levels of plasma omega 3-polyunsaturated fatty acids are associated with cerebral small vessel diseases in acute ischemic stroke patients. Nutr Res 35(5):368–374. https://doi.org/10.1016/j.nutres.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  16. Poels MM et al (2011) Incidence of cerebral microbleeds in the general population: the Rotterdam scan study. Stroke 42(3):656–661. https://doi.org/10.1161/strokeaha.110.607184

    Article  PubMed  Google Scholar 

  17. Akoudad S et al (2015) Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study. Circulation 132(6):509–516. https://doi.org/10.1161/circulationaha.115.016261

    Article  PubMed  Google Scholar 

  18. Greenberg SM et al (2004) Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 35(6):1415–1420. https://doi.org/10.1161/01.STR.0000126807.69758.0e

    Article  PubMed  Google Scholar 

  19. Charidimou A et al (2017) Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: a meta-analysis. Neurology 89(8):820–829. https://doi.org/10.1212/wnl.0000000000004259

    Article  PubMed  PubMed Central  Google Scholar 

  20. Charidimou A et al (2017) Brain microbleeds, anticoagulation, and hemorrhage risk: meta-analysis in stroke patients with AF. Neurology 89(23):2317–2326. https://doi.org/10.1212/wnl.0000000000004704

    Article  PubMed  Google Scholar 

  21. Charidimou A et al (2013) Cerebral microbleeds and recurrent stroke risk: systematic review and meta-analysis of prospective ischemic stroke and transient ischemic attack cohorts. Stroke 44(4):995–1001. https://doi.org/10.1161/strokeaha.111.000038

    Article  PubMed  Google Scholar 

  22. Debette S et al (2019) Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol 76(1):81–94. https://doi.org/10.1001/jamaneurol.2018.3122

    Article  PubMed  Google Scholar 

  23. Wilson D et al (2016) Recurrent stroke risk and cerebral microbleed burden in ischemic stroke and TIA: a meta-analysis. Neurology 87(14):1501–1510. https://doi.org/10.1212/wnl.0000000000003183

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yatawara C et al (2020) The role of cerebral microbleeds in the incidence of post-stroke dementia. J Neurol Sci 412:116736. https://doi.org/10.1016/j.jns.2020.116736

    Article  PubMed  Google Scholar 

  25. Kim TW et al (2014) Cerebral microbleeds and functional outcomes after ischemic stroke. Can J Neurol Sci 41(5):577–582

    Article  PubMed  Google Scholar 

  26. Tsivgoulis G et al (2016) Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. JAMA Neurol 73(6):675–683. https://doi.org/10.1001/jamaneurol.2016.0292

    Article  PubMed  Google Scholar 

  27. Beaman C et al (2022) Cerebral microbleeds, cerebral amyloid angiopathy, and their relationships to quantitative markers of neurodegeneration. Neurology 98(16):e1605. https://doi.org/10.1212/wnl.0000000000200142

    Article  CAS  PubMed  Google Scholar 

  28. Fan F et al (2021) Association between infectious burden and cerebral microbleeds: a pilot cross-sectional study. Ann Clin Transl Neurol 8(2):395–405. https://doi.org/10.1002/acn3.51285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watson T, Shantsila E, Lip GY (2009) Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373(9658):155–166. https://doi.org/10.1016/s0140-6736(09)60040-4

    Article  CAS  PubMed  Google Scholar 

  30. Altintas O, Niftaliyev E, Asil T (2018) The relationship between brain microbleeds and homeostatic markers in the treatment of ischemic stroke. Neurol Res 40(12):1048–1053. https://doi.org/10.1080/01616412.2018.1517111

    Article  CAS  PubMed  Google Scholar 

  31. Cortés GM et al (2014) Von Willebrand factor plasma levels variability in nonvalvular atrial fibrillation. J Atr Fibrillation 7(4):1124

    PubMed  PubMed Central  Google Scholar 

  32. Nezu T et al (2015) Endothelial dysfunction is associated with the severity of cerebral small vessel disease. Hypertens Res 38(4):291–297

    Article  PubMed  Google Scholar 

  33. Zhou S et al (2019) ADAMTS13 protects mice against renal ischemia-reperfusion injury by reducing inflammation and improving endothelial function. Am J Physiol Renal Physiol. https://doi.org/10.1152/ajprenal.00405.2018

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ko D et al (2019) Proteomics profiling and risk of new-onset atrial fibrillation: Framingham heart study. J Am Heart Assoc 8(6):e. https://doi.org/10.1161/jaha.118.010976

    Article  CAS  Google Scholar 

  35. Blázquez-Medela AM et al (2012) Osteoprotegerin is associated with cardiovascular risk in hypertension and/or diabetes. Eur J Clin Invest 42(5):548–556. https://doi.org/10.1111/j.1365-2362.2011.02619.x

    Article  CAS  PubMed  Google Scholar 

  36. Park MS et al (2021) Plasma osteoprotegerin levels are associated with the presence and burden of cerebral small vessel disease in patients with acute ischemic stroke. Clin Neurol Neurosurg 210:107010

    Article  PubMed  Google Scholar 

  37. Horstmann S et al (2015) Prevalence of atrial fibrillation and association of previous antithrombotic treatment in patients with cerebral microbleeds. Eur J Neurol 22(10):1355–1362

    Article  CAS  PubMed  Google Scholar 

  38. Elkhatib THM et al (2020) Prevalence and associated risk factors of cerebral microbleeds in Egyptian patients with acute ischemic stroke and atrial fibrillation. J Stroke Cerebrovasc Dis 29(5):104703

    Article  PubMed  Google Scholar 

  39. Suda S et al (2022) Characteristics of ischemic versus hemorrhagic stroke in Patients receiving oral anticoagulants: results of the PASTA study. Intern Med 61(6):801–810. https://doi.org/10.2169/internalmedicine.8113-21

    Article  CAS  PubMed  Google Scholar 

  40. Soo Y et al (2019) Risk of intracerebral haemorrhage in chinese patients with atrial fibrillation on warfarin with cerebral microbleeds: the IPAAC-Warfarin study. J Neurol Neurosurg Psychiatry 90(4):428–435. https://doi.org/10.1136/jnnp-2018-319104

    Article  PubMed  Google Scholar 

  41. Du H et al (2021) Small vessel disease and ischemic stroke risk during anticoagulation for atrial fibrillation after cerebral ischemia. Stroke 52(1):91–99. https://doi.org/10.1161/strokeaha.120.029474

    Article  CAS  PubMed  Google Scholar 

  42. Okumura K et al (2020) Low-dose edoxaban in very elderly patients with atrial fibrillation. N Engl J Med 383(18):1735–1745. https://doi.org/10.1056/NEJMoa2012883

    Article  CAS  PubMed  Google Scholar 

  43. Shoamanesh A et al (2017) Should patients with ischemic stroke or transient ischemic attack with atrial fibrillation and microbleeds be anticoagulated? Stroke 48(12):3408–3412. https://doi.org/10.1161/strokeaha.117.018467

    Article  PubMed  Google Scholar 

  44. Seiffge DJ et al (2019) Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation. Lancet Neurol 18(1):117–126. https://doi.org/10.1016/s1474-4422(18)30356-9

    Article  PubMed  Google Scholar 

  45. Steffel J et al (2018) The 2018 European heart rhythm association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 39(16):1330–1393. https://doi.org/10.1093/eurheartj/ehy136

    Article  CAS  PubMed  Google Scholar 

  46. Powers WJ et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 50(12):e344. https://doi.org/10.1161/str.0000000000000211

    Article  PubMed  Google Scholar 

  47. Wilson D et al (2019) Early versus late anticoagulation for ischaemic stroke associated with atrial fibrillation: multicentre cohort study. J Neurol Neurosurg Psychiatry 90(3):320–325. https://doi.org/10.1136/jnnp-2018-318890

    Article  PubMed  Google Scholar 

  48. Seiffge DJ et al (2019) Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation. Ann Neurol 85(6):823–834. https://doi.org/10.1002/ana.25489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizoguchi T et al (2020) Early initiation of direct oral anticoagulants after onset of stroke and short- and long-term outcomes of patients with nonvalvular atrial fibrillation. Stroke 51(3):883–891. https://doi.org/10.1161/strokeaha.119.028118

    Article  PubMed  Google Scholar 

  50. Chang PY et al (2021) Oral anticoagulation timing in patients with acute ischemic stroke and atrial fibrillation. Thromb Haemost. https://doi.org/10.1055/a-1669-4987

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hwang J et al (2017) Implications of CHA2DS2-VASc score in stroke patients with atrial fibrillation: an analysis of 938 Korean patients. Eur Neurol 77(5–6):307–315. https://doi.org/10.1159/000475495

    Article  PubMed  Google Scholar 

  52. January CT et al (2019) 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. J Am Coll Cardiol 74(1):104–132. https://doi.org/10.1016/j.jacc.2019.01.011

    Article  PubMed  Google Scholar 

  53. Klijn CJ et al (2019) Antithrombotic treatment for secondary prevention of stroke and other thromboembolic events in patients with stroke or transient ischemic attack and non-valvular atrial fibrillation: a European stroke organisation guideline. Eur Stroke J 4(3):198–223. https://doi.org/10.1177/2396987319841187

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chao TF et al (2020) Comparing the effectiveness and safety of nonvitamin K antagonist oral anticoagulants and warfarin in elderly Asian patients with atrial fibrillation: a nationwide cohort study. Chest 157(5):1266–1277. https://doi.org/10.1016/j.chest.2019.11.025

    Article  CAS  PubMed  Google Scholar 

  55. Ding WY et al (2022) Number needed to treat for net effect of anticoagulation in atrial fibrillation: real-world vs. clinical-trial evidence. Br J Clin Pharmacol 88(1):282–289. https://doi.org/10.1111/bcp.14961

    Article  CAS  PubMed  Google Scholar 

  56. Chao TF et al (2021) Oral anticoagulants in extremely-high-risk, very elderly (> 90 years) patients with atrial fibrillation. Heart Rhythm 18(6):871–877. https://doi.org/10.1016/j.hrthm.2021.02.018

    Article  PubMed  Google Scholar 

  57. Kim D et al (2022) Effectiveness and safety of anticoagulation therapy in frail patients with atrial fibrillation. Stroke. https://doi.org/10.1161/strokeaha.121.036757

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chan YH et al (2020) Effectiveness, safety, and major adverse limb events in atrial fibrillation patients with concomitant diabetes mellitus treated with non-vitamin K antagonist oral anticoagulants. Cardiovasc Diabetol 19(1):63. https://doi.org/10.1186/s12933-020-01043-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee CW et al (2021) Patient satisfaction with dabigatrean and warfarin for stroke prevention in atrial fibrillation: Taiwan PASSION study. J Chin Med Assoc 84(4):375–382. https://doi.org/10.1097/jcma.0000000000000496

    Article  PubMed  Google Scholar 

  60. Choi KH et al (2021) Anticoagulation versus antiplatelet therapy after ischemic stroke in the patients with Atrial fibrillation and cerebral microbleeds. J Stroke 23(2):273–276. https://doi.org/10.5853/jos.2020.04588

    Article  PubMed  PubMed Central  Google Scholar 

  61. Badi MK et al (2019) Pharmacotherapy for patients with atrial fibrillation and cerebral microbleeds. J Stroke Cerebrovasc Dis 28(8):2159–2167. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.04.027

    Article  PubMed  Google Scholar 

  62. Ruff CT et al (2014) Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383(9921):955–962. https://doi.org/10.1016/s0140-6736(13)62343-0

    Article  CAS  PubMed  Google Scholar 

  63. Connolly SJ et al (2011) Apixaban in patients with atrial fibrillation. N Engl J Med 364(9):806–817. https://doi.org/10.1056/NEJMoa1007432

    Article  CAS  PubMed  Google Scholar 

  64. Yokoyama M et al (2019) Effectiveness of Nonvitamin K antagonist oral anticoagulants and warfarin for preventing further cerebral microbleeds in acute ischemic stroke patients with nonvalvular atrial fibrillation and at least one microbleed: CMB-NOW multisite pilot trial. J Stroke Cerebrovasc Dis 28(7):1918–1925. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.050

    Article  PubMed  Google Scholar 

  65. Choi KH et al (2020) Microbleeds and outcome in patients with acute ischemic stroke and atrial fibrillation taking anticoagulants. Stroke 51(12):3514–3522. https://doi.org/10.1161/strokeaha.120.030300

    Article  CAS  PubMed  Google Scholar 

  66. Soo Y et al (2018) Correlation of non-vitamin K antagonist oral anticoagulant exposure and cerebral microbleeds in Chinese patients with atrial fibrillation. J Neurol Neurosurg Psychiatry 89(7):680–686. https://doi.org/10.1136/jnnp-2017-317151

    Article  PubMed  Google Scholar 

  67. Grymonprez M et al (2020) Effectiveness and safety of oral anticoagulants in older patients with atrial fibrillation: a systematic review and meta-analysis. Front Pharmacol 11:583311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marston XL et al (2022) Comparison of clinical outcomes of edoxaban versus apixaban, dabigatran, rivaroxaban, and vitamin K antagonists in patients with atrial fibrillation in Germany: a real-world cohort study. Int J Cardiol 346:93–99. https://doi.org/10.1016/j.ijcard.2021.11.008

    Article  CAS  PubMed  Google Scholar 

  69. Prada-Ramallal G, Takkouche B, Figueiras A (2019) Bias in pharmacoepidemiologic studies using secondary health care databases: a scoping review. BMC Med Res Methodol 19(1):53. https://doi.org/10.1186/s12874-019-0695-y

    Article  PubMed  PubMed Central  Google Scholar 

  70. Best JG et al (2021) Development of imaging-based risk scores for prediction of intracranial haemorrhage and ischaemic stroke in patients taking antithrombotic therapy after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurol 20(4):294–303. https://doi.org/10.1016/s1474-4422(21)00024-7

    Article  PubMed  Google Scholar 

  71. Fisher M (2013) MRI screening for chronic anticoagulation in atrial fibrillation. Front Neurol 4:137. https://doi.org/10.3389/fneur.2013.00137

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wilson D, Charidimou A, Werring DJ (2014) Use of MRI for risk stratification in anticoagulation decision making in atrial fibrillation: promising, but more data are needed for a robust algorithm. Front Neurol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hansen ML et al (2010) Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch Intern Med 170(16):1433–1441

    Article  CAS  PubMed  Google Scholar 

  74. Al-Shahi Salman R et al (2019) Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial. Lancet Neurol 18(7):643–652. https://doi.org/10.1016/s1474-4422(19)30184-x

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qiu J et al (2018) Antiplatelet therapy, cerebral microbleeds, and intracerebral hemorrhage: a meta-analysis. Stroke 49(7):1751–1754. https://doi.org/10.1161/strokeaha.118.021789

    Article  CAS  PubMed  Google Scholar 

  76. Jover E et al (2013) Atherosclerosis and thromboembolic risk in atrial fibrillation: focus on peripheral vascular disease. Ann Med 45(3):274–290. https://doi.org/10.3109/07853890.2012.732702

    Article  CAS  PubMed  Google Scholar 

  77. Sun W et al (2018) Clinical and imaging characteristics of cerebral infarction in patients with nonvalvular atrial fibrillation combined with cerebral artery stenosis. J Atheroscler Thromb 25(8):720–732. https://doi.org/10.5551/jat.43240

    Article  PubMed  PubMed Central  Google Scholar 

  78. Verheugt FWA et al (2019) Antithrombotics: from aspirin to DOACs in coronary artery disease and atrial fibrillation (Part 3/5). J Am Coll Cardiol 74(5):699–711. https://doi.org/10.1016/j.jacc.2019.02.080

    Article  CAS  PubMed  Google Scholar 

  79. Connolly SJ et al (2018) Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet 391(10117):205–218. https://doi.org/10.1016/s0140-6736(17)32458-3

    Article  CAS  PubMed  Google Scholar 

  80. Eikelboom JW et al (2021) Mortality benefit of rivaroxaban plus aspirin in patients with chronic coronary or peripheral artery disease. J Am Coll Cardiol 78(1):14–23. https://doi.org/10.1016/j.jacc.2021.04.083

    Article  CAS  PubMed  Google Scholar 

  81. Andreotti F et al (2006) Aspirin plus warfarin compared to aspirin alone after acute coronary syndromes: an updated and comprehensive meta-analysis of 25,307 patients. Eur Heart J 27(5):519–526. https://doi.org/10.1093/eurheartj/ehi485

    Article  CAS  PubMed  Google Scholar 

  82. Connolly SJ et al (2009) Effect of clopidogrel added to aspirin in patients with atrial fibrillation. N Engl J Med 360(20):2066–2078

    Article  PubMed  Google Scholar 

  83. Chou PS et al (2021) Prevalence and effect of cerebral small vessel disease in stroke patients with aspirin treatment failure-a hospital-based stroke secondary prevention registry. Front Neurol 12:645444

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hilkens NA et al (2018) External validation of risk scores for major bleeding in a population-based cohort of transient ischemic attack and ischemic stroke patients. Stroke 49(3):601–606. https://doi.org/10.1161/strokeaha.117.019259

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ji T et al (2018) Effect of low-dose statins and apolipoprotein E genotype on cerebral small vessel disease in older hypertensive patients: a subgroup analysis of a randomized clinical trial. J Am Med Dir Assoc 19(11):995–1002

    Article  PubMed  Google Scholar 

  86. Haussen DC et al (2012) Statin use and microbleeds in patients with spontaneous intracerebral hemorrhage. Stroke 43(10):2677–2681

    Article  CAS  PubMed  Google Scholar 

  87. Lioutas VA et al (2019) Microbleed prevalence and burden in anticoagulant-associated intracerebral bleed. Ann Clin Transl Neurol 6(8):1546–1551. https://doi.org/10.1002/acn3.50834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hindy G et al (2018) Role of blood lipids in the development of ischemic stroke and its subtypes: a mendelian randomization study. Stroke 49(4):820–827. https://doi.org/10.1161/strokeaha.117.019653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Amarenco P, Labreuche J (2009) Lipid management in the prevention of stroke: review and updated meta-analysis of statins for stroke prevention. Lancet Neurol 8(5):453–463

    Article  CAS  PubMed  Google Scholar 

  90. Collins R et al (2016) Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388(10059):2532–2561. https://doi.org/10.1016/s0140-6736(16)31357-5

    Article  CAS  PubMed  Google Scholar 

  91. Eun MY et al (2020) Statin effects in atrial fibrillation-related stroke: a systematic review and meta-analysis. Front Neurol 11:589684

    Article  PubMed  PubMed Central  Google Scholar 

  92. Choi KH et al (2019) Effect of statin therapy on outcomes of patients with acute ischemic stroke and atrial fibrillation. J Am Heart Assoc 8(24):e. https://doi.org/10.1161/jaha.119.013941

    Article  CAS  Google Scholar 

  93. Omelchenko A et al (2021) LDL cholesterol and ischemic stroke in patients with nonvalvular atrial fibrillation. Am J Med 134(4):507–513. https://doi.org/10.1016/j.amjmed.2020.08.035

    Article  CAS  PubMed  Google Scholar 

  94. Qi Z et al (2017) Relation of low-density lipoprotein cholesterol to ischemic stroke in patients with nonvalvular atrial fibrillation. Am J Cardiol 119(8):1224–1228

    Article  CAS  PubMed  Google Scholar 

  95. Ho BL et al (2019) Statins and the risk of bleeding in patients taking dabigatran. Acta Neurol Scand 139(5):455–461. https://doi.org/10.1111/ane.13077

    Article  CAS  PubMed  Google Scholar 

  96. Yang N et al (2016) Low level of low-density lipoprotein cholesterol is related with increased hemorrhagic transformation after acute ischemic cerebral infarction. Eur Rev Med Pharmacol Sci 20(4):673–678

    CAS  PubMed  Google Scholar 

  97. Global, regional, and national comparative risk assessment of 84 behaviournvironmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 Lancet et al (2018) 392(10159): 1923–1994. https://doi.org/10.1016/s0140-6736(18)32225-6

  98. Spence JD (2018) Controlling resistant hypertension. Stroke Vasc Neurol 3(2):69–75. https://doi.org/10.1136/svn-2017-000138

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lip GY et al (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137(2):263–272. https://doi.org/10.1378/chest.09-1584

    Article  PubMed  Google Scholar 

  100. Ishii M et al (2017) Relationship of hypertension and systolic blood pressure with the risk of stroke or bleeding in patients with atrial fibrillation: the Fushimi AF registry. Am J Hypertens 30(11):1073–1082. https://doi.org/10.1093/ajh/hpx094

    Article  CAS  PubMed  Google Scholar 

  101. Arima H et al (2010) Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke 41(2):394–396

    Article  CAS  PubMed  Google Scholar 

  102. Kim D et al (2018) Ideal blood pressure in patients with atrial fibrillation. J Am Coll Cardiol 72(11):1233–1245. https://doi.org/10.1016/j.jacc.2018.05.076

    Article  PubMed  Google Scholar 

  103. Krittayaphong R et al (2021) Average systolic blood pressure and clinical outcomes in patients with atrial fibrillation: prospective data from COOL-AF registry. Clin Interv Aging 16:1835–1846. https://doi.org/10.2147/cia.S335321

    Article  PubMed  PubMed Central  Google Scholar 

  104. Aparicio HJ et al (2022) Low blood pressure, comorbidities, and ischemic stroke mortality in US veterans. Stroke 53(3):886–894. https://doi.org/10.1161/strokeaha.120.033195

    Article  PubMed  Google Scholar 

  105. Yano Y, Kario K (2012) Nocturnal blood pressure, morning blood pressure surge, and cerebrovascular events. Curr Hypertens Rep 14(3):219–227. https://doi.org/10.1007/s11906-012-0261-z

    Article  PubMed  Google Scholar 

  106. Chen YK et al (2022) Circadian rhythms of blood pressure in hypertensive patients with cerebral microbleeds. Brain Behav. https://doi.org/10.1002/brb3.2530

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fukuda K et al (2022) Day-by-day blood pressure variability in the subacute stage of ischemic stroke and long-term recurrence. Stroke 53(1):70–78. https://doi.org/10.1161/strokeaha.120.033751

    Article  PubMed  Google Scholar 

  108. Mazzucco S et al (2022) Cerebral hemodynamic effects of early blood pressure lowering after TIA and stroke in patients with carotid stenosis. Int J Stroke. https://doi.org/10.1177/17474930211068655

    Article  PubMed  PubMed Central  Google Scholar 

  109. Samuels N et al (2021) Blood pressure in the first 6 hours following endovascular treatment for ischemic stroke is associated with outcome. Stroke 52(11):3514–3522. https://doi.org/10.1161/strokeaha.120.033657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhu Z et al (2022) Effect of immediate blood pressure reduction on post-stroke depression in ischemic stroke patients: a substudy of CATIS trial. J Affect Disord 300:195–202. https://doi.org/10.1016/j.jad.2021.12.120

    Article  PubMed  Google Scholar 

  111. Liu L et al (2021) China antihypertensive trial in acute ischemic stroke II (CATIS-2): rationale and design. Stroke Vasc Neurol 6(2):286–290. https://doi.org/10.1136/svn-2020-000828

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pasquel FJ, Gregg EW, Ali MK (2018) The evolving epidemiology of atherosclerotic cardiovascular disease in people with diabetes. Endocrinol Metab Clin North Am 47(1):1–32. https://doi.org/10.1016/j.ecl.2017.11.001

    Article  PubMed  Google Scholar 

  113. Stahel P et al (2018) The atherogenic dyslipidemia complex and novel approaches to cardiovascular disease prevention in diabetes. Can J Cardiol 34(5):595–604. https://doi.org/10.1016/j.cjca.2017.12.007

    Article  PubMed  Google Scholar 

  114. Madonna R et al (2018) Diabetic macroangiopathy: pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage. Vascul Pharmacol. https://doi.org/10.1016/j.vph.2018.01.009

    Article  PubMed  Google Scholar 

  115. Lonardo A et al (2018) Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? J Hepatol 68(2):335–352. https://doi.org/10.1016/j.jhep.2017.09.021

    Article  PubMed  Google Scholar 

  116. Kezerle L et al (2022) Relation of hemoglobin A1C levels to risk of ischemic stroke and mortality in patients with diabetes mellitus and atrial fibrillation. Am J Cardiol 172:48–53. https://doi.org/10.1016/j.amjcard.2022.02.024

    Article  CAS  PubMed  Google Scholar 

  117. Lei C et al (2018) Blood glucose levels are associated with cerebral microbleeds in patients with acute ischaemic stroke. Eur Neurol 80((3–4)):187–192. https://doi.org/10.1159/000494990

    Article  CAS  PubMed  Google Scholar 

  118. Song TJ et al (2018) High dietary glycemic load was associated with the presence and burden of cerebral small vessel diseases in acute ischemic stroke patients. Nutr Res 51:93–101. https://doi.org/10.1016/j.nutres.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  119. Inkeri J et al (2022) Glycemic control is not related to cerebral small vessel disease in neurologically asymptomatic individuals with type 1 diabetes. Acta Diabetol 59(4):481–490. https://doi.org/10.1007/s00592-021-01821-8

    Article  CAS  PubMed  Google Scholar 

  120. Shu MJ et al (2021) Metabolic syndrome, intracranial arterial stenosis and cerebral small vessel disease in community-dwelling populations. Stroke Vasc Neurol 6(4):589–594. https://doi.org/10.1136/svn-2020-000813

    Article  PubMed  PubMed Central  Google Scholar 

  121. Johnston KC et al (2019) Intensive vs Standard Treatment of Hyperglycemia and functional outcome in patients with Acute ischemic stroke: the SHINE Randomized Clinical Trial. JAMA 322(4):326–335. https://doi.org/10.1001/jama.2019.9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tziomalos K et al (2017) Stress hyperglycemia and acute ischemic stroke in-hospital outcome. Metabolism 67:99–105. https://doi.org/10.1016/j.metabol.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  123. Mentias A et al (2019) Role of diabetes and insulin use in the risk of stroke and acute myocardial infarction in patients with atrial fibrillation: a Medicare analysis. Am Heart J 214:158–166. https://doi.org/10.1016/j.ahj.2019.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zelniker TA et al (2020) Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus: insights from the DECLARE-TIMI 58 trial. Circulation 141(15):1227–1234. https://doi.org/10.1161/circulationaha.119.044183

    Article  CAS  PubMed  Google Scholar 

  125. Zhou Z et al (2021) Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: results from the CREDENCE trial and meta-analysis. Stroke 52(5):1545–1556. https://doi.org/10.1161/strokeaha.120.031623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang C et al (2019) Prevalence of modifiable risk factors and relation to stroke and death in patients with atrial fibrillation: a report from the China atrial fibrillation registry study. J Cardiovasc Electrophysiol 30(12):2759–2766. https://doi.org/10.1111/jce.14231

    Article  PubMed  Google Scholar 

  127. Okumura K et al (2020) Risk factors associated with ischemic stroke in Japanese patients with nonvalvular atrial fibrillation. JAMA Netw Open 3(4):e. https://doi.org/10.1001/jamanetworkopen.2020.2881

    Article  Google Scholar 

Download references

Funding

Dr. Xueping Zheng receives grant support from the Affiliated Hospital of Qingdao University (QDFY) grants (X202101032).

Author information

Authors and Affiliations

Authors

Contributions

XZ conceptualized the project. MW and YY performed the literature search and screening. LX and MZ evaluated the quality of the articles. YW and ML extracted and analyzed data from the included literature. WM wrote the manuscript with contribution from XZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueping Zheng.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yang, Y., Luan, M. et al. Role of cerebral microbleeds in acute ischemic stroke and atrial fibrillation. J Thromb Thrombolysis 55, 553–565 (2023). https://doi.org/10.1007/s11239-022-02761-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-022-02761-y

Keywords

Navigation