Skip to main content
Log in

Molecular and supramolecular structures of new 5-phenyl-1H-pyrrol-2-carbonyl azide

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using X-ray diffraction, IR spectroscopy, and quantum chemistry [B3LYP/6–311 +  + G**, AIM], the molecular and supramolecular structures and association of 5-phenyl-1H-pyrrole-2-carbonyl azide were studied in detail. The motives for the formation of supramolecular and crystal structures have been established. A topological analysis of non-valent interactions in the crystal was carried out. A probable reason has been established for the relatively low sensitivity of 5-phenyl-1H-pyrrole-2-carbonyl azide to ionizing ultraviolet and X-ray radiation compared to other pyrrole-2-carbonyl azides. Indeed, the relative stability of the new pyrrolazide lies in the organization of associative dimeric structures, in the formation of which the nitrogen atoms of the azide fragment participate through hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

No datasets were generated or analyzed during the current study.

References

  1. Sivaguru P, Ning Y, Bi X (2021) New strategies for the synthesis of aliphatic azides. Chem Rev 121(7):4253–4307. https://doi.org/10.1021/acs.chemrev.0c01124

    Article  CAS  PubMed  Google Scholar 

  2. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed Engl 44(33):5188–5240. https://doi.org/10.1002/anie.200400657

    Article  CAS  PubMed  Google Scholar 

  3. Scriven EFV, Turnbull K (1988) Azides: their preparation and synthetic uses. Chem Rev 88(2):297–368. https://doi.org/10.1021/cr00084a001

    Article  CAS  Google Scholar 

  4. Amblard F, Cho JH, Schinazi RF (2009) Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 109(9):4207–4220. https://doi.org/10.1021/cr9001462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 113(7):4905–4979. https://doi.org/10.1021/cr200409f

    Article  CAS  PubMed  Google Scholar 

  6. Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44(9):666–676. https://doi.org/10.1021/ar200148z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Párkányi L, Besenyei G (2004) Crystallographic characterisation of benzoyl azides. A comparative study. J Mol Struct 691(1–3):97–106. https://doi.org/10.1016/j.molstruc.2003.11.036

    Article  ADS  CAS  Google Scholar 

  8. Chauhan UB, Tomich AW, Lavallo V (2019) The first example of a «click» reaction with a carboranyl azide and an olefin. Tetrahedron 75(10):1323–1325. https://doi.org/10.1016/j.tet.2019.01.049

    Article  CAS  Google Scholar 

  9. Bakulev V, Shafran Y, Dehaen W (2019) Progress in intermolecular and intramolecular reactions of thioamides with diazo compounds and azides. Tetrahedron Lett 60(7):513–523. https://doi.org/10.1016/j.tetlet.2019.01.032

    Article  CAS  Google Scholar 

  10. Abad N, Hajji M, Ramli Y, Belkhiria M, Elmgirhi SMH, Habib MA, Guerfel T, Mague JT, Essassi EM (2020) A newly synthesized nitrogen-rich derivative of bicyclic quinoxaline - structural and conceptual DFT reactivity study. J Phys Org Chem 33(6):e4055. https://doi.org/10.1002/poc.4055

    Article  CAS  Google Scholar 

  11. Holzschneider K, Haring AP, Haack A, Corey DJ, Benter T, Kirsch SF (2017) Pathways in the degradation of geminal diazides. J Org Chem 82(15):8242–8250. https://doi.org/10.1021/acs.joc.7b01019

    Article  CAS  PubMed  Google Scholar 

  12. Funt LD, Krivolapova YV, Khoroshilova OV, Novikov MS, Khlebnikov AF (2020) 2H-Azirine-2-carbonyl azides: preparation and use as N-heterocyclic building blocks. J Org Chem 85(6):4182–4194. https://doi.org/10.1021/acs.joc.9b03367

    Article  CAS  PubMed  Google Scholar 

  13. Wigley DE (1994) Organoimido complexes of the transition metals. Prog Inorg Chem 42:239–482. https://doi.org/10.1002/9780470166437.ch4

    Article  CAS  Google Scholar 

  14. Harter AG, Klapötke TM, Stierstorfer J, Voggenreiter M, Zeng X (2021) Synthesis, characterization and energetic performance of oxalyl diazide, carbamoyl azide, and N, N’-bis(azidocarbonyl)hydrazine. Chem Plus Chem 86(6):870–874. https://doi.org/10.1002/cplu.202100214

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Wan H, Lu Y, Lu B, Zeng X (2019) Photodecomposition of 1H-pyrrole carbonyl azides: direct observation of singlet 1H-pyrrole carbonyl nitrenes and triplet 1H–3-pyrrylnitrene. Eur J Org Chem 2–3:401–411. https://doi.org/10.1002/ejoc.201800830

    Article  CAS  Google Scholar 

  16. Scholz SO, Farney EP, Kim S, Bates DM, Yoon TP (2016) Spin-selective generation of triplet nitrenes: olefin aziridination through visible-light photosensitization of azidoformates. Angew Chem Int Ed Engl 55(6):2239–2242. https://doi.org/10.1002/anie.201510868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tarasova OA, Brandsma L, Trofimov BA (1993) Facile one-pot syntheses of 1-allenylpyrroles. Synthesis 6:571–572. https://doi.org/10.1055/s-1993-25906

    Article  Google Scholar 

  18. Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Ivanov AV (2020) Expedient synthesis of a new class of organic building blocks: N-allenylpyrrole-2-carbaldehydes. Tetrahedron Lett 61(52):152666. https://doi.org/10.1016/j.tetlet.2020.152666

    Article  CAS  Google Scholar 

  19. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  20. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  21. Bruker SADABS (2001) Bruker AXS Inc, Madison, Wisconsin, USA

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, JrJA Montgomery, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  23. Bader RFW, Matta CF (2013) Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found Chem 15(3):253–276. https://doi.org/10.1007/s10698-012-9153-1

    Article  CAS  Google Scholar 

  24. Keith TA (2015) AIMAll (version 15.05.18) TK Gristmill Software, Overland Park KS, USA. http://aim.tkgristmill.com

  25. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285(3–4):170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  ADS  CAS  Google Scholar 

  26. Plumley JA, Dannenberg JJ (2011) A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. J Comput Chem 32(8):1519–1527. https://doi.org/10.1002/jcc.21729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balabin RM (2008) Enthalpy difference between conformations of normal alkanes: intramolecular basis set superposition error (BSSE) in the case of n-butane and n-hexane. J Chem Phys 129(16):164101. https://doi.org/10.1063/1.2997349

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yassine H, Hafid A, Khouili M, Mentre O, ElM K (2016) Ethyl 2-[(azido­carbon­yl)amino]­benzoate. IUCrData 1(7):x161155. https://doi.org/10.1107/S241431461601155X

    Article  CAS  Google Scholar 

  29. Goszczycki P, Stadnicka K, Brela MZ, Grolik J, Ostrowska K (2017) Synthesis, crystal structures, and optical properties of the π-π interacting pyrrolo[2,3-b]quinoxaline derivatives containing 2-thienyl substituent. J Mol Struct 1146:337–346. https://doi.org/10.1016/j.molstruc.2017.06.008

    Article  ADS  CAS  Google Scholar 

  30. Sterkhova IV, Chipanina NN, Oznobikhina LP, Tolstikova LL, Shainyan BA (2022) Supramolecular structure of the product of unusual [2C=C + 2C=N] cycloaddition of dicyclohexylcarbodiimide to N-(3-methylbut-2-en-1-ylidene)triflamide. J Mol Struct 1250(2):131676. https://doi.org/10.1016/j.molstruc.2021.131676

    Article  CAS  Google Scholar 

  31. Baryshnikov GV, Minaev BF, Minaeva VA, Podgornaya AT, Agren H (2012) Application of Bader’s atoms in molecules theory to the description of coordination bonds in the complex compounds of Ca2+ and Mg2+ with methylidene rhodanine and its anion. Rus J Gen Chem 82(7):1154–1262. https://doi.org/10.1134/S1070363212070122

    Article  CAS  Google Scholar 

  32. Cremer D, Kraka E (1984) Description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57(6):1259–1281

    Google Scholar 

  33. Abdulov KS, Muloev NU, Tabarov SK, Khodiev MK (2020) Quantum chemical determination of the molecular structure of 1,2,4-triazole and the calculation of its infrared spectrum. J Struct Chem 61:510–514. https://doi.org/10.1134/S0022476620040022

    Article  CAS  Google Scholar 

  34. Ulaş Y (2021) Theoretical and experimental investigation of 2-((4-(hydroxymethyl)phenyl)(pyrrolidin-1-yl) methyl)phenol: synthesis, spectroscopic (FTIR, UV, NMR) studies, and NLO analysis. J Struct Chem 62:356–368. https://doi.org/10.1134/s0022476621030021

    Article  CAS  Google Scholar 

  35. Nakanishi K (1965) Infra-Red spectra and structure of organic compounds. Russian translation, Mir, Moscow

  36. Bellamy LJ (1971) The Infra-Red spectra of complex molecules. Translated from English, Mir, Moscow

Download references

Acknowledgements

The work was carried out using the material and technical base of the Baikal Analytical Center for Collective Use of the SB RAS. This work was carried out within the framework of the research project of the Russian Academy of Sciences № 122041100024-7.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, review and editing: Tatiana N. Borodina, Tatiana E. Fedorova, Vladimir I. Smirnov; writing—review and editing: Andrey V. Ivanov, Elena A. Gyrgenova; synthesis and growing of crystals: Andrey V. Ivanov, Elena A. Gyrgenova; X-ray diffraction analysis: Tatiana N. Borodina; infrared spectroscopy: Tatiana E. Fedorova; quantum chemical calculations: Tatiana N. Borodina, Tatiana E. Fedorova.

Corresponding author

Correspondence to Tatiana N. Borodina.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 546 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodina, T.N., Smirnov, V.I., Fedorova, T.E. et al. Molecular and supramolecular structures of new 5-phenyl-1H-pyrrol-2-carbonyl azide. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02302-8

Keywords

Navigation