Skip to main content
Log in

Docking, DFT, and structural study of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the current work, we report the synthesis and characterization of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide by reacting 4-aminoantipyrine and benzoylisothiocynate in equimolar ratio. Moreover, the compound was characterized by single crystal XRD analysis. The various intermolecular interactions stabilized the supramolecular assembly, including H-bonding and interaction involving π-ring. Hirshfeld surface analysis was performed in order to probe intermolecular interactions in detail. Interaction energy calculations were conducted to find the type of interaction energy prominent in stabilizing supramolecular assembly. The quantum parameters of the prepared compound were investigated by utilizing the Def2-SVPD basis set in conjunction with the hybrid method of B3LYP. The results revealed quite similarities between the experimental and theoretical calculations. In addition, the HOMO orbitals are located at the hetero atoms, while the LUMO orbitals are located at the benzene ring. In addition, the prepared compound was docked with Ampicillin-CTX-M-15. The results showed good binding interaction between the ligand and the targeted amino acids, with the best binding score of − 5.26 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data and materials are available online.

References

  1. Raper ES (1997) Complexes of heterocyclic thionates Part 2: complexes of bridging ligands. Coord Chem Rev 165:475–567. https://doi.org/10.1016/S0010-8545(97)90167-3

    Article  CAS  Google Scholar 

  2. Matczak P, Domagała M (2017) Heteroatom and solvent effects on molecular prop- erties of formaldehyde and thioformaldehyde symmetrically disubstituted with heterocyclic groups C4H3Y (where Y = O-Po). J Mol Model 23:268. https://doi.org/10.1007/s00894-017-3435-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Quin LD, Tyrell JA (2010) Fundamentals of heterocyclic chemistry: importance in nature and in the synthesis of pharmaceuticals. John Wiley & Sons

    Google Scholar 

  4. Jain SC, Sinha J, Bhagat S, Errington W, Olsen CE (2003) A facile synthesis of novel spiro- [indole-pyrazolinyl-thiazolidine]-2,4′-dione. Synth Commun 33:563–577. https://doi.org/10.1081/SCC-120015810

    Article  CAS  Google Scholar 

  5. Sondhi SM, Sharma VK, Verma RP, Singhal N, Shukla R, Raghubir R, Dubey MP (1999) Synthesis 5:878. https://doi.org/10.1055/s-1999-3472

    Article  Google Scholar 

  6. Mishra AP (1999) Physicochemical and antimicrobial studies on nickel (II) and copper (II) Schiff base complexes derived from 2-furfuraldehyde. J Indian Chem Soc 76:35–37

    CAS  Google Scholar 

  7. Raman N, Kulandaisamy A, Jeyasubramanian K (2004) Synthesis, structural characterization, redox, and antibacterial studies of 12-membered tetraaza macrocyclic Cu(II), Ni(II), Co(II), Zn(II), and VO(IV) complexes derived from 1,2-bis(imino-4’-antipyrinyl)-1,2- diphenylethane and o-Phenylenediamine. Syn React Inorg Met 34:17–43

    Article  CAS  Google Scholar 

  8. Sondhi SM, Singhal N, Verma RP, Arora SK, Dastidar SG (2004) Synthesis of hemin and porphyrin derivatives and their evaluation for anticancer activity. Indian J Chem B 40:113–119

    Google Scholar 

  9. Raman N, Johnson S, Raja SA (2009) Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J Coord Chem 62:691–709

    Article  CAS  Google Scholar 

  10. Fadda AA, Elattar KM (2012) Synthesis of novel azo disperse dyes derived from 4- aminoantipyrine and their applications to polyester fabrics. Am J Org Chem 2:52–57. https://doi.org/10.5923/j.ajoc.20120203.03

    Article  CAS  Google Scholar 

  11. Ali A, Fahad T, Abdullah AA (2013) Synthesis and spectral properties of some new derivatives of 4-aminoantipyrine azo dyes (part I). J Kufa Sci 8:59–69

    Google Scholar 

  12. Selvan GT, Kumaresan M, Sivaraj R, Enoch IVMV, Selvakumar PM (2016) Iso- meric 4-aminoantipyrine derivatives as fluorescent chemosensors of Al3 + ions and their molecular logic behavior. Sensors Actuators B Chem 229:181–189. https://doi.org/10.1016/j.snb.2016.01.097

    Article  CAS  Google Scholar 

  13. Farhan M, Alsalami F (2019) Synthesis and characterization of substituted starch grafted methyl nadic anhydride and substituted with 4- aminoantipyrine. Earthline J Chem Sci 1:103–113. https://doi.org/10.34198/ejcs.1219.103113

    Article  CAS  Google Scholar 

  14. Hong JM, Jun JK, Kim HY, Ahn S, Chang S-K (2015) Colorimetric signaling of Cu (II) ions by oxidative coupling of anilines with 4-aminoantipyrine. Tetra- hedron Lett 56:5393–5396

    Article  CAS  Google Scholar 

  15. Cunha S, Macedo FC Jr, Costa GAN, Rodrigues MT, Verde RBV, de Souza Neta LC, Vencato IC, Lariucci F (2007) Antimicrobial activity and structural study of disubstituted thiourea derivatives. Monatshefte Fur Chemie 138:511–516

    Article  CAS  Google Scholar 

  16. Faihan AS, AlShammari RH, Ashfaq M, Muhammad S, Al-Jibori SA, Tahir MN, Hatshan MR, Al-Janabi AS, Al-Moayid SM (2023) Synthesis, spectroscopic, crystallographic, quantum and molecular docking investigations of cis-4,5-diphenylimidazolidine-2-thione. J of Mol Struct 1286:135633. https://doi.org/10.1016/j.molstruc.2023.135633

    Article  CAS  Google Scholar 

  17. Al-Janabi AMA, Faihan AS, Al-Mutairi AM, Hatshan MR, Al-Jibori SA, Al-Janabi ASM (2022) Spectroscopic, biological activity studies, and DFT calculations, of Pd(II) and Pt(II) complexes of 4-Methylene-3-phenyl-3,4-dihydroquinazoline-2(1H)-thione J Indian Chem Soc 99(11):100774. https://doi.org/10.1016/j.jics.2022.100774

  18. Abdullah TB, Jirjes HM, Faihan AS, Al-Janabi ASM (2023) Spectroscopic, computational, anti-bacterial studies of bivalent metal complexes of N-picolyl-amine dithiocarbamate. J of Mol Struct 1276:134730. https://doi.org/10.1016/j.molstruc.2022.134730

    Article  CAS  Google Scholar 

  19. Faihan AS, Al-Jibori SA, Al-Janabi AS (2022) Novel base-free dianion complexes of Pt(II) and Pd(II) derived from heterocyclic thiourea and tertiary phosphine ligands. J of Mol Struct 1251:131966. https://doi.org/10.1016/j.molstruc.2021.131966

    Article  CAS  Google Scholar 

  20. Abdullah TB, Behjatmanesh-Ardakani R, Faihan AS, Jirjes HM, Abou-Krisha MM, Yousef TA, Kenawy SH, Al-Janabi ASM (2023) Cd(II) and Pd(II) mixed ligand complexes of dithiocarbamate and tertiary phosphine ligands—spectroscopic, anti-microbial, and computational studies. Molecules 28:2305. https://doi.org/10.3390/molecules28052305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov A F, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Kobayashi RJ, Normand, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JM, Cross JM, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J W, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Rev. E.01, in, Wallingford, CT

  22. Pritchard BP, Altarawy D, Didier B, Gibson TD, Windus TL (2019) New basis set exchange: an open, up-to-date resource for the molecular sciences community. J Chem Inf Model 59:4814–4820

    Article  PubMed  CAS  Google Scholar 

  23. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  ADS  CAS  Google Scholar 

  24. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: Natural bond orbital analysis program. J Comput Chem 34:1429–1437

    Article  PubMed  CAS  Google Scholar 

  25. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 5.0 Semichem Inc. Shawnee Mission KS

  26. Keith TA, AIMAll (2010)Version 10.05.04 Overland Park KS, USA 

  27. El Sayed DS, Abdelrehim EM (2021) Computational details of molecular structure, spectroscopic properties, topological studies and SARS-Cov-2 enzyme molecular docking simulation of substituted triazolo pyrimidine thione heterocycles. https://doi.org/10.1016/j.saa.2021.120006

  28. El-Sayed DS, Elbadawy HA, Khalil TE (2022) Rational modulation of N and O binding in Fe(III) complex formation derived from hydroxychloroquine: synthesis, spectroscopic, computational, and docking simulation with human thrombin plasma. J of Mol Struct 132268. https://doi.org/10.1016/j.molstruc.2021.132268

  29. Ahmadvand P, Avillan JJ, Lewis JA, Call DR, Kang C (2022) Characterization of interactions between CTX-M-15 and clavulanic acid, desfuroylceftiofur, ceftiofur, ampicillin, and nitrocefin. Int J Mol Sci 23. https://doi.org/10.3390/ijms23095229

  30. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  31. Garrett MM et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  Google Scholar 

  32. Molecular graphics and analyses performed with UCSF Chimera, developed by the resource for biocomputing, visualization, and informatics at the University of California, San Francisco, with support from NIH P41-GM103311.

  33. Sheldrick GM (2015) SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A: Found Adv 71(1):3–8

    Article  ADS  Google Scholar 

  34. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71(1):3–8

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D Biol Crystallogr 65(2):148–155

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  36. Macrae CF, Sovago I, Cottrell SJ, Galek PT, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M (2020) Mercury 4.0: from visualization to analysis, design and prediction. J Appl Crystallogr 53(1): 226–235

  37. Faihan AS, Hatshan MR, Alqahtani AS, Nasr FA, Al-Jibori SA, Al-Janabi AS (2022) New divalent metal ion complexes with 1,8-diaminonapthalene-2-thione: synthesis, spectroscopic, anti-bacterial and anticancer activity studies. J of Mol Struct 1247:131291. https://doi.org/10.1016/j.molstruc.2021.131291

    Article  CAS  Google Scholar 

  38. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 72(2):171–179

    Article  ADS  CAS  Google Scholar 

  39. Cunha S, Oliveira SM, Rodrigues MT, Bastos RM, Ferrari J, de Oliveira CMA, Kato L, Napolitano HB, Vencato I, Lariucci C (2005) Structural studies of 4-aminoantipyrine derivatives. J Mol Struct 752(1):32–39

    Article  ADS  CAS  Google Scholar 

  40. Shoaib M, Ayaz M, Tahir MN, Shah SW (2016) Synthesis, characterization, crystal structures, analgesic and antioxidant activities of thiourea derivatives. J of the Chem Soc of Pak 38(3)

  41. Arslan NB, Kazak C, Aydın F (2012) N-(4-Nitrobenzoyl)-N′-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: synthesis, spectroscopic characterization, X-ray structure and DFT studies. Spectrochim Acta A Mol Biomol Spectrosc 89:30–38

    Article  PubMed  ADS  CAS  Google Scholar 

  42. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54(3):1006–1011

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  43. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  44. Shehnaz W, Siddiqui A, Raza MA, Ashraf A, Ashfaq M, Tahir MN, Niaz S (2024) Structure elucidation single X-ray crystal diffraction studies, Hirshfeld surface analysis, DFT and antibacterial studies of sulfonamide functionalized Schiff base copper (II) and zinc (II) complexes. J Mol Struct 1295:136603

    Article  CAS  Google Scholar 

  45. Masood S, Jamshaid M, Zafar MN, Mughal EU, Ashfaq M, Tahir MN (2024) ONO-pincer Zn(II) & Cd(II) complexes: synthesis, structural characterization, Hirshfeld surface analysis and CT-DNA interactions. J Mol Struct 1295:136571

    Article  CAS  Google Scholar 

  46. Raza AR, Rubab SL, Ashfaq M, Altaf Y, Tahir MN, Rehman MF, Aziz T, Alharbi M, Alasmari AF ( 2023) Evaluation of antimicrobial, anticholinesterase potential of indole derivatives and unexpectedly synthesized novel benzodiazine: characterization, DFT and Hirshfeld charge analysis. Molecules 28(13): 5024–5044.

  47. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. ChemComm 37:3814–3816

    Google Scholar 

  48. Kargar H, Fallah-Mehrjardi M, Ashfaq M, Munawar KS, Tahir MN (2023) Cis-dioxomolybdenum(VI) complex bearing tridentate ONO isonicotinoyl hydrazone Schiff base: synthesis, characterization, crystal structure, and catalytic activity investigation for the oxidation of sulfides. J Mol Struct 1294:136458

    Article  CAS  Google Scholar 

  49. Mashhadi SMA, Bhatti MH, Jabeen E, Yunus U, Ashfaq M, Akhtar M, Tahir MN, Alshehri SM, Ahmed S, Ojha SC (2023) Synthesis and antioxidant studies of 2,4-dioxothiazolidine-5-acetic acid based organic salts: SC-XRD and DFT approach. ACS Omega 8(33):30186–30198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Inac H, Ashfaq M, Dege N, Feizi-Dehnayebi M, Munawar KS, Yağcı NK, Poyraz Çınar E, Tahir MN (2024) Synthesis, spectroscopic characterizations, single crystal XRD, supramolecular assembly inspection via Hirshfeld surface analysis, and DFT study of a hydroxy functionalized Schiff base Cu(II) complex. J Mol Struct 1295:136751

    Article  CAS  Google Scholar 

  51. Jelsch C, Ejsmont K, Huder L (2014) The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 1(2):119–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 4(5):575–587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Turner MJ, Grabowsky S, Jayatilaka D, Spackman MA (2014) Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J Phys Chem Lett 5(24):4249–4255

    Article  PubMed  CAS  Google Scholar 

  54. Ashfaq M, Tahir MN, Bogdanov G, Ali A, Ahmed M, Ahmed G, Abbas A (2023) Crystal structure, supramolecular assembly exploration by Hirshfeld surface analysis and DFT inspection of the synthesized functionalized crystalline anilide. J Iran Chem Soc. https://doi.org/10.1007/s13738-023-02904-9

    Article  Google Scholar 

  55. Riaz M, Ali A, Ashfaq M, Ibrahim M, Akram N, Tahir MN, Kuznetsov A, Rodríguez L, Sameeh MY, Assiri MA, Torre AF, dl (2023) Polymorphs of substituted p-toluenesulfonanilide: synthesis, single-crystal analysis, Hirshfeld surface exploration, and theoretical investigation. ACS Omega 8(38):35307–35320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kurbanova M, Ashfaq M, Tahir MN, Maharramov A, Dege N, Ramazanzade N, Cinar EB (2023) Synthesis, crystal structure, supramolecular assembly inspection by Hirshfeld surface analysis and computational exploration of 4-Phenyl-6-(p-Tolyl)Pyrimidin-2 (1H)-One (PPTP). J Struct Chem 64(3):437–449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tikrit University for its support and acknowledge University of Sargodha, B.O. 40100, Punjab, Pakistan, for their support. Also, the authors from Ardakan University, P.O. Box 184, Ardakan, Iran, and University of Center Florida, USA, are thankful for their support.

Author information

Authors and Affiliations

Authors

Contributions

ASF: supervision, review and editing. MA, ND, and MNT: crystallographic analysis. KAJ, NMA, ASA-J, and AJG: conceptualization, methodology, investigation, data curation, writing—review and editing. RB-A: DFT study.

Corresponding author

Correspondence to Ahmed S. Faihan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, K.A., Aziz, N.M., Ashfaq, M. et al. Docking, DFT, and structural study of N-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)carbamothioyl)benzamide. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02278-5

Keywords

Navigation