Skip to main content
Log in

Research of new acetylcholinesterase inhibitors based on QSAR and molecular docking studies of benzene-based carbamate derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the current study, we carried out a quantitative structure–activity relationship study of a series of thirty benzene-based carbamate derivatives reported as potential acetylcholinesterase inhibitors (AChEIs) using multiple linear regression method. For modeling, the series of molecules was split into training set and test set. Twenty-four molecules were used as training set to build the quantitative model and the remaining (test set) were used to evaluate the built model performances in terms of the predictive power. The quality of the model was found to be statistically satisfying (R2 = 0.811; R2adj = 0.759; MSE = 0.020; Q2CV = 0.689; Q2CV (rand) = −0.406; R2rand = 0.114). Furthermore, our model exhibited an excellent predictive capability (R2test = 0.824). What is more, the applicability domain has been defined for the built model using Williams plot. Based on the developed model, a series of newer carbamate derivatives were designed and their ADMET properties were predicted using pKCSM online software. Furthermore, molecular docking studies were performed to assess the binding affinities between the designed compounds and AChE enzyme. All designed compounds showed good binding affinities toward the targeted enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A (2020) Environmental toxins and Alzheimer’s disease progression. Neurochem Int 141:104852. https://doi.org/10.1016/J.NEUINT.2020.104852

    Article  CAS  PubMed  Google Scholar 

  2. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031. https://doi.org/10.1016/S0140-6736(10)61349-9

    Article  PubMed  Google Scholar 

  3. Tarawneh R, Holtzman DM (2012) The clinical problem of symptomatic alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2(5). https://doi.org/10.1101/CSHPERSPECT.A006148

  4. Smita SS, Trivedi M, Tripathi D, Pandey-Rai S, Pandey R (2021) Neuromodulatory potential of Asparagus racemosus and its bioactive molecule Shatavarin IV by enhancing synaptic acetylcholine level and nAChR activity. Neurosci Lett 136294. https://doi.org/10.1016/J.NEULET.2021.136294

  5. Decker M, Krauth F, Lehmann J (2006) Novel tricyclic quinazolinimines and related tetracyclic nitrogen bridgehead compounds as cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorg Med Chem 14(6):1966–1977. https://doi.org/10.1016/J.BMC.2005.10.044

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed S, Tariq Khan S., Kazim Zargaham M., Ullah Khan A., Khan S., Hussain A., Uddin J., Khan A., Al-Harras A. (2021) Potential therapeutic natural products against Alzheimer’s disease with reference of acetylcholinesterase. Biomed Pharmacother 139:111609. https://doi.org/10.1016/j.biopha.2021.111609

    Article  CAS  PubMed  Google Scholar 

  7. Finn LA (2017) Current medications for the treatment of Alzheimer’s disease: acetylcholinesterase inhibitors and NMDA receptor antagonist. In Drug discovery approaches for the treatment of neurodegenerative disorders: Alzheimer’s disease, Elsevier Inc., 49–58

  8. Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F (2021) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. Elsevier Ltd, p. 108352. https://doi.org/10.1016/j.neuropharm.2020.108352

  9. Cummings JL (2003) Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Am J Geriatr Psychiatry 11(2):131–145. https://doi.org/10.1097/00019442-200303000-00004

    Article  PubMed  Google Scholar 

  10. Zerroug A, Belaidi S, BenBrahim I, Sinha L, Chtita S (2019) Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. J King Saud Univ - Sci 31(4):595–601. https://doi.org/10.1016/J.JKSUS.2018.03.024

    Article  Google Scholar 

  11. Zerroug E, Belaidi S, Chtita S (2021) Artificial neural network-based quantitative structure–activity relationships model and molecular docking for virtual screening of novel potent acetylcholinesterase inhibitors. J Chinese Chem Soc 68(8):1379–1399. https://doi.org/10.1002/JCCS.202000457

    Article  CAS  Google Scholar 

  12. Ghosh AK, Brindisi M (2015) Organic carbamates in drug design and medicinal chemistry. J Med Chem 58(7):2895–2940. https://doi.org/10.1021/JM501371S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krátký M, Vinšová J (2016) Salicylanilide N-monosubstituted carbamates: synthesis and in vitro antimicrobial activity. Bioorg Med Chem 24(6):1322–1330. https://doi.org/10.1016/J.BMC.2016.02.004

    Article  PubMed  Google Scholar 

  14. Janganati V, Penthala NR, Madadi NR, Chen Z, Crooks PA (2014) Anti-cancer activity of carbamate derivatives of melampomagnolide B. Bioorg Med Chem Lett 24(15):3499–3502. https://doi.org/10.1016/J.BMCL.2014.05.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hari Babu P, Venkataramaiah C, Naga Raju C, Chalapathi PV (2021) Design, synthesis, characterization of new carbamates of 4-nitrophenylchloroformate and their antimicrobial and antioxidant activities: an in vitro and in silico approach. Chem Africa 4(1):23–36. https://doi.org/10.1007/S42250-020-00211-X

    Article  CAS  Google Scholar 

  16. Bajda M, Łątka K, Hebda M, Jończyk J, Malawska B (2018) Novel carbamate derivatives as selective butyrylcholinesterase inhibitors. Bioorg Chem 78:29–38. https://doi.org/10.1016/J.BIOORG.2018.03.003

  17. Darvesh S, Darvesh KV., McDonald RS., Mataija D., Walsh R., Mothana S., Lockridge O., Martin E. (2008) Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem 51(14):4200–4212. https://doi.org/10.1021/JM8002075

    Article  CAS  PubMed  Google Scholar 

  18. Bak A et al (2019) Novel benzene-based carbamates for AChE/BChE inhibition: synthesis and ligand/structure-oriented SAR study. Int J Mol Sci 20(7):1524. https://doi.org/10.3390/ijms20071524

    Article  CAS  PubMed Central  Google Scholar 

  19. Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. , Gaussian, Inc., Wallingford CT, 2016.

  20. Buntrock R.E. (2002) Chemoffice ultra 7.0, J. Chem. Inf. Comput. Sci., 42(6),1505–1506. https://doi.org/10.1021/ci025575p

  21. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Chtita S et al (2020) QSAR study of N-substituted oseltamivir derivatives as potent avian influenza virus H5N1 inhibitors using quantum chemical descriptors and statistical methods. New J Chem 44(5):1747–1760. https://doi.org/10.1039/C9NJ04909F

    Article  CAS  Google Scholar 

  24. Daoui O, Mazoir N, Bakhouch M, Salah M, Benharref A, Gonzalez-Coloma A, Elkhattabi S, El Yazidi M, Chtita S, (2022) 3D-QSAR ADME-Tox and molecular docking of semisynthetic triterpene derivatives as antibacterial and insecticide agents. Struct Chem. https://doi.org/10.1007/s11224-022-01912-4

  25. Daoui O, Elkhattabi S, Chtita S, et al (2021) QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon 7:e07463. https://doi.org/10.1016/j.heliyon.2021.e07463

  26. Abchir O, Daoui O, Belaidi S, Ouassaf M, Abul Qais F, Elkhattabi S, Chtita S (2022) Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. J Mol Model 28:106. https://doi.org/10.1007/s00894-022-05097-9

  27. Daoui O, Mkhayar K, Elkhatabi S, Chtita S, Zgou H, Elkhalabi K (2022) Design of novel carbocycle-fused quinoline derivatives as potential inhibitors of lymphoblastic leukemia cell line MOLT-3 using 2D-QSAR and ADME-Tox studies. RHAZES: Green and Applied Chemistry 14:36–61. https://doi.org/10.48419/IMIST.PRSM/rhazes-v14.31152

  28. Addinsoft (2014). XLSTAT statistical and data analysis solution. Long Island, NY, USA. https://www.xlstat.com

  29. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29(6–7):476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  Google Scholar 

  30. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  31. Belhassan A, Bakhouch M, Taourati AI, Aouidate A, Belaidi S, Moutaabbid M, Belaaouad S, Bouachrine M, Lakhlifi T (2021) QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods. Chemom Intell Lab Syst 210:104266. https://doi.org/10.1016/J.CHEMOLAB.2021.104266

    Article  CAS  Google Scholar 

  32. Chtita S, Ghamali M, Ousaa A, Aouidate A, Belhassan A,Taourati AI, Masand VH, Bouachrine M, Lakhlifi T (2019) QSAR study of anti-human African trypanosomiasis activity for 2-phenylimidazopyridines derivatives using DFT and Lipinski’s descriptors. Heliyon 5(3). https://doi.org/10.1016/J.HELIYON.2019.E01304

  33. Rakhimbekova A, Madzhidov TI, Nugmanov RI, Gimadiev TR, Baskin II, Varnek A (2020) Comprehensive analysis of applicability domains of QSPR models for chemical reactions. Int J Mol Sci 21(15):1–20. https://doi.org/10.3390/IJMS21155542

    Article  Google Scholar 

  34. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701. https://doi.org/10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  35. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, Van de Sandt JJM, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA Altern Lab Anim 33(2):155–173. https://doi.org/10.1177/026119290503300209

    Article  CAS  PubMed  Google Scholar 

  36. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” J Comput Chem 31(2):455. https://doi.org/10.1002/JCC.21334

  37. Cheung J, Rudolph M, Burshteyn F, Cassidy M, Gary E, Love J, Height J, Franklin M (2012) Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J Med Chem 55(22):10282–10286. http://dx.doi.org/10.1021/jm300871x

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

  39. BIOVIA Discovery Studio - BIOVIA - Dassault Systèmes®. Retrieved from https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio

  40. OCDE (2014) Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD Series on Testing and Assessment, n° 69, Éditions OCDE, Paris. https://doi.org/10.1787/9789264085442-en

  41. Roy P, Paul S, Mitra I, Roy K (2010) On two novel parameters for validation of predictive QSAR models. Molecules 15(1):604-605. https://doi.org/10.3390/molecules15010604

  42. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ogu CC, Maxa JL (2000) Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent) 13(4):421. https://doi.org/10.1080/08998280.2000.11927719

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hassan Nour: writing, original draft preparation, conceptualization, methodology. Oussama Abchir: writing, conceptualization. Salah Belaidi: visualization, supervision. Samir Chtita: methodology, visualization, validation, software, supervision.

Corresponding author

Correspondence to Samir Chtita.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nour, H., Abchir, O., Belaidi, S. et al. Research of new acetylcholinesterase inhibitors based on QSAR and molecular docking studies of benzene-based carbamate derivatives. Struct Chem 33, 1935–1946 (2022). https://doi.org/10.1007/s11224-022-01966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01966-4

Keywords

Navigation