Skip to main content
Log in

Host-guest molecular encapsulation of cucurbit[7]uril with dillapiole congeners using docking simulation and density functional theory approaches

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Binding affinity and intermolecular interactions are essential characteristics that could be used to comprehend molecular recognition between molecules in supramolecular host-guest systems. This work presented a molecular docking simulation and density functional theory (DFT) calculation at the B3LYP-631g(d) level of theory on dillapiole and its derivatives (guest compounds) complexation with cucurbit[7]uril (host compound). The supramolecular host-guest inclusion complex binding energies, − 4.46 to − 5.47 kcal mol−1 and − 0.53 to − 15.38 kcal mol−1 for docking and DFT calculation, respectively, were calculated, and the intermolecular interactions such as the hydrogen bonding, electrostatic, dispersion, and pi-alkyl formation involved were observed. The negative binding energies of D1-CB [7], D2-CB [7], D3-CB [7], D4-CB [7], D5-CB [7], D6-CB [7], and D-CB [7], computed from both the theoretical approaches, suggested the possible inclusion of the guests inside the cucurbit[7]uril cavity, enabling the formation of stable inclusion compounds. However, the significant difference in the binding energy values from the DFT calculation demonstrated a clustered preference in terms of the complex stabilisation, with D2-CB [7], D3-CB [7], D5-CB [7], and D6-CB [7] dominantly favourable, while D1-CB [7], D4-CB [7], and D were inclusion complexes with the least favourable. Encapsulation of the guests’ structural frame as a whole or a part and steric constraint associated with the guests’ substituents positioning in addition to the intermolecular interactions were also noted to induce stabilisation in the binding energy, thus reflecting a preferable inclusion complex. Besides, the theoretical calculations on the rationalisation of the selected guests’ energy barrier were found to correlate well with experimental works of hydroboration oxidation synthesis to produce alcohol derivatives of dillapiole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Schneider H-J, Agrawal P, Yatsimirsky AK (2013) Supramolecular complexations of natural products. Chem Soc Rev 42:6777

    CAS  PubMed  Google Scholar 

  2. Webber MJ, Langer R (2017) Drug delivery by supramolecular design. Chem Soc Rev 46:6600–6620

    CAS  PubMed  Google Scholar 

  3. Takashima Y, Harada A (2017) Functioning via host–guest interactions. J Incl Phenom Macrocycl Chem 87:313–330

    CAS  Google Scholar 

  4. Tang J-H, Li Y, Wu Q et al (2019) Single-molecule level control of host-guest interactions in metallocycle-C60 complexes. Nat Commun 10:4599

    PubMed  PubMed Central  Google Scholar 

  5. Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host–guest interactions. Chem Rev 115:7794–7839

    CAS  PubMed  Google Scholar 

  6. Al-Dubaili N, El-Tarabily K, Saleh N (2018) Host-guest complexes of imazalil with cucurbit[8]uril and β-cyclodextrin and their effect on plant pathogenic fungi. Sci Rep 8:1–10

    CAS  Google Scholar 

  7. Lehn JM (2013) Perspectives in chemistry - steps towards complex matter. Angew Chemie - Int Ed 52:2836–2850

    CAS  Google Scholar 

  8. Jin X, Zhu L, Xue B et al (2019) Supramolecular nanoscale drug-delivery system with ordered structure. Natl Sci Rev 6:1128–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhalla V (2018) Supramolecular chemistry. Resonance 23:277–290

    CAS  Google Scholar 

  10. Torresi S, Famulari A, Martí-Rujas J (2020) Kinetically controlled fast crystallization of M12L 8 poly-[ n ]-catenanes using the 2,4,6-Tris(4-pyridyl)benzene ligand and ZnCl2 in an aromatic environment. J Am Chem Soc 142:9537–9543

    CAS  PubMed  Google Scholar 

  11. Marti-Rujas J, Desmedt A, Harris KDM, Guillaume F (2004) Direct time-resolved and spatially resolved monitoring of molecular transport in a crystalline nanochannel system. J Am Chem Soc 126:11124–11125

    CAS  PubMed  Google Scholar 

  12. Martí-Rujas J, Desmedt A, Harris KDM, Guillaume F (2009) Bidirectional transport of guest molecules through the nanoporous tunnel structure of a solid inclusion compound. J Phys Chem C 113:736–743

    Google Scholar 

  13. Couzi M, Guillaume F, Harris KDM (2018) A phenomenological model for structural phase transitions in incommensurate alkane/urea inclusion compounds. R Soc Open Sci 5:180058

    PubMed  PubMed Central  Google Scholar 

  14. Egleston BD, Luzyanin KV, Brand MC et al (2020) Controlling gas selectivity in molecular porous liquids by tuning the cage window size. Angew Chemie Int Ed 59:7362–7366

    CAS  Google Scholar 

  15. Abet V, Szczypiński FT, Little MA et al (2020) Inducing social self-sorting in organic cages to tune the shape of the internal cavity. Angew Chemie Int Ed 59:16755–16763

    CAS  Google Scholar 

  16. Vepuri SB, Anbazhagan S, Divya D, Padmini D (2013) Review article a review on supramolecular chemistry in drug. Indones JPharm 24:131–150

    Google Scholar 

  17. Geng W-C, Sessler JL, Guo D-S (2020) Supramolecular prodrugs based on host–guest interactions. Chem Soc Rev 49:2303–2315

    CAS  PubMed  Google Scholar 

  18. Assaf KI, Nau WM (2015) Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev 44:394–418

    CAS  PubMed  Google Scholar 

  19. Lee R, Mason SA, Mossou E et al (2016) Neutron diffraction studies on guest-induced distortions in urea inclusion compounds. Cryst Growth Des 16:7175–7185

    CAS  Google Scholar 

  20. Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41:1621–1636

    CAS  PubMed  Google Scholar 

  21. Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875

    CAS  PubMed  Google Scholar 

  22. Zhao H-X, Guo D-S, Wang L-H et al (2012) A novel supramolecular ternary polymer with two orthogonal host–guest interactions. Chem Commun 48:11319

    CAS  Google Scholar 

  23. Koner AL, Ghosh I, Saleh N, Nau WM (2011) Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can J Chem 89:139–147

    CAS  Google Scholar 

  24. Kim J, Jung IS, Kim SY et al (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122:540–541

    CAS  Google Scholar 

  25. Lee JW, Samal S, Selvapalam N et al (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630

    CAS  PubMed  Google Scholar 

  26. Das D, Assaf KI, Nau WM (2019) Applications of cucurbiturils in medicinal chemistry and chemical biology. Front Chem 7

  27. Jeon WS, Moon K, Park SH et al (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989

    CAS  PubMed  Google Scholar 

  28. Isaacs L (2009) Cucurbit[n]urils: from mechanism to structure and function. Chem Commun:619–629

  29. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phyther Res 21:308–323

    CAS  Google Scholar 

  30. Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T et al (2019) Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules 9:679

    CAS  PubMed Central  Google Scholar 

  31. Feyaerts AF, Luyten W, Van Dijck P (2020) Striking essential oil: tapping into a largely unexplored source for drug discovery. Sci Rep 10:2867

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kfoury M, Landy D, Fourmentin S (2018) Characterization of cyclodextrin/volatile inclusion complexes: a review. Molecules 23:1204

    PubMed Central  Google Scholar 

  33. Chan W (2014) Cytotoxic effects of dillapiole on embryonic development of mouse blastocysts in vitro and in vivo. Int J Mol Sci 15:10751–10765. https://doi.org/10.3390/ijms150610751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rojas-Martínez R, Arrieta J, Cruz-Antonio L et al (2013) Dillapiole, isolated from peperomia pellucida, shows gastroprotector activity against ethanol-induced gastric lesions in wistar rats. Molecules 18:11327–11337

    PubMed  PubMed Central  Google Scholar 

  35. Ferreira AK, De-Sá-Júnior PL, Pasqualoto KFM et al (2014) Cytotoxic effects of dillapiole on MDA-MB-231 cells involve the induction of apoptosis through the mitochondrial pathway by inducing an oxidative stress while altering the cytoskeleton network. Biochimie 99:195–207

    CAS  PubMed  Google Scholar 

  36. Parise-Filho R, Pastrello M, Pereira Camerlingo CE et al (2011) The anti-inflammatory activity of dillapiole and some semisynthetic analogues. Pharm Biol 49:1173–1179

    CAS  PubMed  Google Scholar 

  37. Baldi A (2010) Computational approaches for drug design and discovery: an overview. Syst Rev Pharm 1:99

    CAS  Google Scholar 

  38. Macalino SJY, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharm Res 38:1686–1701

    CAS  PubMed  Google Scholar 

  39. de Oliveira VE, Almeida EWC, Castro HV et al (2011) Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J Phys Chem A 115:8511–8519

    PubMed  Google Scholar 

  40. Liang Q, Chai K, Lu K et al (2017) Theoretical and experimental studies on the separation of cinnamyl acetate and cinnamaldehyde by adsorption onto a β-cyclodextrin polyurethane polymer. RSC Adv 7:43502–43511

    CAS  Google Scholar 

  41. Guendouzi A, Mekelleche SM, Brahim H, Litim K (2017) Quantitative conformational stability host-guest complex of Carvacrol and Thymol with β-cyclodextrin: a theoretical investigation. J Incl Phenom Macrocycl Chem 89:143–155

    CAS  Google Scholar 

  42. Lawtrakul L, Inthajak K, Toochinda P (2014) Molecular calculations on β-cyclodextrin inclusion complexes with five essential oil compounds from Ocimum basilicum (sweet basil). ScienceAsia 40:145

    CAS  Google Scholar 

  43. Tomar SS, Maheshwari ML, Mukerjee (1979) Syntheses and synergistic activity of some pyrethrum synergists from dillapiole. Agric Biol Chem 43:1479–1483

    CAS  Google Scholar 

  44. Parise-Filho R, Pasqualoto KFM, Magri FMM et al (2012) Dillapiole as Antileishmanial agent: discovery, cytotoxic activity and preliminary SAR studies of dillapiole analogues. Arch Pharm (Weinheim) 345:934–944

    CAS  Google Scholar 

  45. Ferreira R, Monteiro M, Silva J, Maia J (2016) Antifungal action of the dillapiole-rich oil of Piper aduncum against dermatomycoses caused by filamentous Fungi. Br J Med Med Res 15:1–10

    Google Scholar 

  46. Nascimento LD d, Almeida LQ, Sousa EMP d et al (2020) Microwave-assisted extraction: an alternative to extract Piper aduncum essential oil. Brazilian J Dev 6:40619–40638

    Google Scholar 

  47. Luís D, Cruz V, Sumita TC et al (2020) Effects of the semi-synthetic compound dillapiole n -butyl ether in Balb / C mice. J Toxicol Environ Heal Part A 0:1–12

    Google Scholar 

  48. Salazar LC, Ortiz-Reyes A, Rosero DM, Lobo-Echeverri T (2020) Dillapiole in Piper holtonii as an inhibitor of the symbiotic fungus Leucoagaricus gongylophorus of leaf-cutting ants. J Chem Ecol 46:668–674

    CAS  PubMed  Google Scholar 

  49. Liu SQ, Scott IM, Pelletier Y et al (2014) Dillapiol: a pyrethrum synergist for control of the Colorado potato beetle. J Econ Entomol 107:797–805

    CAS  PubMed  Google Scholar 

  50. Fazolin M, Estrela JLV, Medeiros AFM et al (2016) Synergistic potential of dillapiole-rich essential oil with synthetic pyrethroid insecticides against fall armyworm. Ciência Rural 46:382–388

    CAS  Google Scholar 

  51. da Fonseca MS, Domingos PRC, da Silva Pinto AC, Rafael MS (2016) Toxic effect and genotoxicity of the semisynthetic derivatives dillapiole ethyl ether and dillapiole n -butyl ether for control of Aedes albopictus (Diptera: Culicidae). Mutat Res Toxicol Environ Mutagen 807:1–7

    Google Scholar 

  52. Walia S, Saha S, Parmar BS (2004) Liquid chromatographic method for the analysis of two plant based insecticide synergists dillapiole and dihydrodillapiole. J Chromatogr A 1047:229–233

    CAS  PubMed  Google Scholar 

  53. Hayashi Y, Ohara K, Taki R et al (2018) Combined analysis of 1,3-benzodioxoles by crystalline sponge X-ray crystallography and laser desorption ionization mass spectrometry. Analyst 143:1475–1481

    CAS  PubMed  Google Scholar 

  54. Taylor P, Pinalli R, Barboza T et al (2013) Detection of amphetamine precursors with quinoxaline-bridged cavitands. Supramol Chem 25:682–687

    Google Scholar 

  55. Dassault Systèmes BIOVIA (2018) Discovery studio, v19. San Diego, Dassault Systèmes

    Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  57. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    CAS  Google Scholar 

  59. Rizvi SMD, Shakil S, Haneef M (2013) A simple click by click protocol to perform docking: Autodock 4.2 made easy for non-bioinformaticians. EXCLI J 12:830–857

    Google Scholar 

  60. Ma D, Chan DS-H, Leung C (2011) Molecular docking for virtual screening of natural product databases. Chem Sci 2:1656–1665

    CAS  Google Scholar 

  61. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    CAS  PubMed  Google Scholar 

  62. Thangaraj S, Gopalakrishnan VK (2011) Molecular docking and QSAR studies on plant derived bioactive compounds as potent inhibitors of DEK oncoprotein. Asian J Pharm Clin Res 4:67–71

    CAS  Google Scholar 

  63. Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179

    CAS  PubMed  Google Scholar 

  64. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH···O hydrogen bonds in protein-ligand binding. Proteins Struct Funct Genet 49:567–576

    CAS  PubMed  Google Scholar 

  66. Rajendiran N, Sankaranarayanan RK, Saravanan J (2015) Nanochain and vesicles formed by inclusion complexation of 4,4′-diaminobenzanilide with cyclodextrins. J Exp Nanosci 10:880–899

    CAS  Google Scholar 

  67. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  68. Steiner T (2002) The hydrogen bond in the solid state. Angew Chemie Int Ed 41:48–76

    CAS  Google Scholar 

  69. Masturaini CA (2018) Synthesis of Dillapiole derivatives and their gabaergic, acetylcholinesterase and cytotoxicity activities. Master’s thesis, Universiti Malaysia Terengganu

Download references

Funding

We are grateful to the computational chemistry research group at the Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia for the high-performance computer facility provided and Fundamental Research Grant Scheme funding vot. no. 59261.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Siti Fatimah Zaharah Mustafa, Siti Rosilah Arsad; Methodology: Siti Fatimah Zaharah Mustafa, Hassan H. Abdallah; Formal analysis and investigation: Siti Fatimah Zaharah Mustafa, Siti Rosilah Arsad, Hassan H. Abdallah; Writing – original draft preparation: Siti Fatimah Zaharah Mustafa, Siti Rosilah Arsad; Writing – review and editing: Habsah Mohamad, Hassan H. Abdallah, Hasmerya Maarof; Funding acquisition: Habsah Mohamad; Resources: Hasmerya Maarof.

Corresponding author

Correspondence to Siti Fatimah Zaharah Mustafa.

Ethics declarations

Competing for interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Code availability

Discovery Studio, v19, AutoDock 4.2 software and Gaussian 09, Revision D.01.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, S.F.Z., Arsad, S.R., Mohamad, H. et al. Host-guest molecular encapsulation of cucurbit[7]uril with dillapiole congeners using docking simulation and density functional theory approaches. Struct Chem 32, 1151–1161 (2021). https://doi.org/10.1007/s11224-020-01708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01708-4

Keywords

Navigation