Skip to main content

Advertisement

Log in

Structural and thermochemical studies of pyrrolidine borane and piperidine borane by gas electron diffraction and quantum chemical calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The gaseous structures, thermochemical properties and dehydrogenation reaction energy profiles of the borane complexes of pyrrolidine and piperidine have been investigated using gas electron diffraction (GED) and state-of-the-art computational methods. These complexes are of interest because of their potential as hydrogen storage materials for future onboard transport applications. A comparative structural and thermochemical analysis revealed structures with a slight difference in the essential B–N bond length, with the piperidine borane having a longer bond even though it has a stronger B–N bond according to predicted bond dissociation energies, a trend common with amine boranes. To identify the most favourable dehydrogenation pathway, BH3-catalysed and BH3-uncatalysed dehydrogenation channels have been explored, where the former has been shown to be the favourable process for both complexes. The energy requirements for the hydrogen release reactions are expected to be minimal as evidenced from the calculated dehydrogenation reaction energies, implying their suitability for onboard chemical hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goto Y, Sasaki M (2000). Mater Trans JIM 41(8):1068–1072

    CAS  Google Scholar 

  2. Matizamhuka WR, Sigalas I, Herrmann M, Dubronvinsky L, Dubrovinskaia N, Miyajima N, Mera G, Riedel R (2011). Materials 4(12):2061–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nemeth B, Guegan JP, Veszpremi T, Guillemin J-C (2013). Inorg Chem 52(1):346–354

    CAS  PubMed  Google Scholar 

  4. Németh B, Khater B, Guillemin J-C, Veszprémi T (2010). Inorg Chem 49(11):4854–4864

    PubMed  Google Scholar 

  5. Abboud JLM, Németh B, Guillemin J-C, Burk P, Adamson A, Nerut ER (2012). Chem Eur J 18(13):3981–3991

    CAS  PubMed  Google Scholar 

  6. Banu T, Sen K, Ghosh D, Debnath T, Das AK (2014). RSC Adv 4(3):1352–1361

    CAS  Google Scholar 

  7. Sen K, Banu T, Debnath T, Ghosh D, Das AK (2014). RSC Adv 4(42):21924

    CAS  Google Scholar 

  8. Umeyama H, Morokuma K (1976). J Am Chem Soc 98(23):7208–7220

    CAS  Google Scholar 

  9. Hu M, Geanangel R, Wendlandt W (1978). Thermochim Acta 23(2):249–255

    CAS  Google Scholar 

  10. Anane H, Jarid A, Boutalib A, Nebot-Gil I, Tomás F (1998). J Mol Struct THEOCHEM 455(1):51–57

    CAS  Google Scholar 

  11. Lane CF (2006) Ammonia-Borane and Related N-B-H Compounds and Materials: Safety Aspects, Properties and Applications (a survey completed as part of a project for the DOE Chemical Hydrogen Storage Center of Excellence, Contract # DE-FC36-05GO15060). Northern Arizona University, Flagstaff. Available at http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/nbh_h2_storage_survey.pdf (accessed 16/07/20)

  12. Miranda CR, Ceder G (2007). J Chem Phys 126(18):184703

    PubMed  Google Scholar 

  13. Stephens FH, Pons V, Baker RT (2007). Dalton Trans 25:2613–2626

    Google Scholar 

  14. Bowden M, Autrey T, Brown I, Ryan M (2008). Curr Appl Phys 8(3):498–500

    Google Scholar 

  15. Staubitz A, Robertson AP, Manners I (2010). Chem Rev 110(7):4079–4124

    CAS  PubMed  Google Scholar 

  16. Lu Z-H, Yao Q, Zhang Z, Yang Y, Chen X (2014). J Nanomater 2014:729029/1–729029/12

    Google Scholar 

  17. Durig JR, Li YS, Odom JD (1973). J Mol Struct 16(3):443–450

    CAS  Google Scholar 

  18. Cassoux P, Kuczkowski RL, Bryan PS, Taylor RC (1975). Inorg Chem 14(1):126–129

    CAS  Google Scholar 

  19. Iijima K, Shibata S (1979). Bull Chem Soc Jpn 52(3):711–715

    CAS  Google Scholar 

  20. Iijima K, Shibata S (1980). Bull Chem Soc Jpn 53(7):1908–1913

    CAS  Google Scholar 

  21. Iijima K, Shibata S (1983). Bull Chem Soc Jpn 56(7):1891–1895

    CAS  Google Scholar 

  22. Iijima K, Adachi N, Shibata S (1984). Bull Chem Soc Jpn 57(11):3269–3273

    CAS  Google Scholar 

  23. Sun C, Yao X, Du A, Li L, Smith S, Lu G (2008). Phys Chem Chem Phys 10(40):6104–6106

    CAS  PubMed  Google Scholar 

  24. Aldridge S, Downs AJ, Tang CY, Parsons S, Clarke MC, Johnstone RDL, Robertson HE, Rankin DWH, Wann DA (2009). J Am Chem Soc 131(6):2231–2243

    CAS  PubMed  Google Scholar 

  25. Clippard PH, Hanson JC, Taylor RC (1971). J Cryst Mol Struct 1(6):363–371

    CAS  Google Scholar 

  26. Hargittai M, Hargittai I (1977). J Mol Struct 39(1):79–89

    CAS  Google Scholar 

  27. Grant DJ, Matus MH, Anderson KD, Camaioni DM, Neufeldt SR, Lane CF, Dixon DA (2009). J Phys Chem A 113(21):6121–6132

    CAS  PubMed  Google Scholar 

  28. Bowden ME, Brown IW, Gainsford GJ, Wong H (2008). Inorg Chim Acta 361(7):2147–2153

    CAS  Google Scholar 

  29. Burg AB, Good CD (1956). J Inorg Nucl Chem 2(4):237–245

    CAS  Google Scholar 

  30. Akerfeldt S, Hellstro M (1966). Acta Chem Scand 20(5):1418

    CAS  Google Scholar 

  31. Akerfeldt S, Wahlberg K, Hellström M (1969). Acta Chem Scand 23(1):115–l25

    CAS  PubMed  Google Scholar 

  32. Ringertz H (1969). Acta Chem Scand 23(1):137–143

    CAS  PubMed  Google Scholar 

  33. Williams R (1969). Acta Chem Scand 23(1):149–158

    CAS  Google Scholar 

  34. Kroll JA, Shillady DD (1973). J Am Chem Soc 95(5):1422–1425

    CAS  Google Scholar 

  35. Konovalov A, Møllendal H, Guillemin J-C (2009). J Phys Chem A 113(29):8337–8342

    CAS  PubMed  Google Scholar 

  36. Andresini M, De Angelis S, Uricchio A, Visaggio A, Romanazzi G, Ciriaco F, Corriero N, Degennaro L, Luisi R (2018). J Organomet Chem 83(17):10221–10230

    CAS  Google Scholar 

  37. Ja’o AM, Masters SL, Wann DA, Rankine CD, Nunes JPF, Guillemin J-C (2019). J Phys Chem A 123(32):7104–7112

    PubMed  Google Scholar 

  38. Matus MH, Anderson KD, Camaioni DM, Autrey ST, Dixon DA (2007). J Phys Chem A 111(20):4411–4421

    CAS  PubMed  Google Scholar 

  39. Gilbert TM (2004). J Phys Chem A 108(13):2550–2554

    CAS  Google Scholar 

  40. Grant DJ, Dixon DA (2005). J Phys Chem A 109(44):10138–10147

    CAS  PubMed  Google Scholar 

  41. Nguyen VS, Matus MH, Ngan VT, Nguyen MT, Dixon DA (2008). J Phys Chem C 112(14):5662–5671

    CAS  Google Scholar 

  42. Nguyen VS, Swinnen S, Nguyen MT, Dixon DA (2009). J Phys Chem C 113(43):18914–18926

    CAS  Google Scholar 

  43. Nguyen VS, Majumdar D, Leszczynski J, Nguyen MT (2013). Chem Phys Lett 584:30–36

    CAS  Google Scholar 

  44. Niaz S, Manzoor T, Pandith AH (2015). Renew Sust Energ Rev 50:457–469

    CAS  Google Scholar 

  45. Feller D, Peterson KA, Grant Hill J (2011). J Chem Phys 135(4):044102

    PubMed  Google Scholar 

  46. Rankine CD, Nunes JPF, Lock Feixas T, Young S, Wann DAA (2018). J Phys Chem A 122(25):5656–5665

    CAS  PubMed  Google Scholar 

  47. Nunes JPF (2017) Ph.D Thesis, University of York

  48. Hinchley SL, Robertson HE, Borisenko KB, Turner AR, Johnston BF, Rankin DWH, Ahmadian M, Jones JN, Cowley AH (2004). Dalton Trans 16:2469–2476

    Google Scholar 

  49. Ross AW, Fink M, Hilderbrandt R (1992) In: Wilson AJC (ed) International Tables for Crystallography, vol C. Kluwer Academic Publishers, Dordrecht, Boston and London, p 245

    Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  51. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJ, Wang D, Nieplocha J, Apra E, Windus TL (2010). Comput Phys Commun 181(9):1477–1489

    CAS  Google Scholar 

  52. Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166(3):275–280

    CAS  Google Scholar 

  53. Zhao Y, Truhlar DG (2008). Theor Chem Accounts 120(1):215–241

    CAS  Google Scholar 

  54. Hehre WJ, Ditchfield R, Pople JA (1972). J Chem Phys 56(5):2257–2261

    CAS  Google Scholar 

  55. Krishnan R, Binkley JS, Seeger R, Pople JA (1980). J Chem Phys 72(1):650–654

    CAS  Google Scholar 

  56. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982). J Chem Phys 77(7):3654–3665

    CAS  Google Scholar 

  57. Frisch MJ, Pople JA, Binkley JS (1984). J Chem Phys 80(7):3265–3269

    CAS  Google Scholar 

  58. Woon DE, Dunning Jr TH (1995). J Chem Phys 103(11):4572–4585

    CAS  Google Scholar 

  59. Sipachev V (1985). THEOCHEM J Mol Struct 121:143–151

    Google Scholar 

  60. Sipachev V (2001). J Mol Struct 567:67–72

    Google Scholar 

  61. Peng C, Schlegel HB (1993). Isr J Chem 33(4):449–454

    CAS  Google Scholar 

  62. Gonzalez C, Schlegel HB (1990). J Phys Chem 94(14):5523–5527

    CAS  Google Scholar 

  63. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997). J Chem Phys 106(3):1063–1079

    CAS  Google Scholar 

  64. Dunning Jr TH (1989). J Chem Phys 90(2):1007–1023

    CAS  Google Scholar 

  65. Blake AJ, Brain PT, McNab H, Miller J, Morrison CA, Parsons S, Rankin DWH, Robertson HE, Smart BA (1996). J Phys Chem 100(30):12280–12287

    CAS  Google Scholar 

  66. Brain PT, Morrison CA, Parsons S, Rankin DWH (1996). Dalton Trans 24:4589–4596

    Google Scholar 

  67. Mitzel NW, Rankin DWH (2003). Dalton Trans 19:3650–3662

    Google Scholar 

  68. Gillespie R (1963). J Chem Educ 40(6):295

    CAS  Google Scholar 

  69. Bader RF, Gillespie RJ, MacDougall PJ (1988). J Am Chem Soc 110(22):7329–7336

    CAS  Google Scholar 

  70. Gillespie RJ, Robinson EA (1996). Angew Chem Int Ed 35(5):495–514

    CAS  Google Scholar 

  71. Hargittai I, Menyhárd DK (2010). J Mol Struct 978(1):136–140

    CAS  Google Scholar 

  72. Atkinson SJ, Noble-Eddy R, Masters SL (2016). J Phys Chem A 120(12):2041–2048

    CAS  PubMed  Google Scholar 

  73. Sipachev VA (2000). Struct Chem 11(2):167–172

    CAS  Google Scholar 

  74. Haaland A (1989). Angew Chem Int Ed 28(8):992–1007

    Google Scholar 

  75. Shishkov I, Vilkov L, Pyatakov N (1992). J Struct Chem 33(1):38–42

    Google Scholar 

  76. Borisenko K, Samdal S, Shishkov I, Vilkov L (1998). Acta Chem Scand 52:312–321

    CAS  Google Scholar 

  77. Pfafferott G, Oberhammer H, Boggs JE (1985). J Am Chem Soc 107(8):2309–2313

    CAS  Google Scholar 

  78. Shlykov SA, Phien TD, Gao Y, Weber PM (2015). Struct Chem 26(5–6):1501–1512

    CAS  Google Scholar 

  79. Nguyen MT, Nguyen VS, Matus MH, Gopakumar G, Dixon DA (2007). J Phys Chem A 111(4):679–690

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.L.M. and A.M.J. thank the New Zealand eScience Infrastructure (NeSI) for supercomputing resources. All data supporting this study are provided either in the results section of this paper or as supplementary information accompanying this paper.

Funding

A.M.J. would like to thank the Federal University Kashere (Nigeria) for funding his doctoral fellowship through the Tertiary Education Trust Fund (TETFund). D.A.W. and C.D.R. would also like to thank the EPSRC for funding the gas electron diffraction and theoretical research at the University of York (UK) via a Fellowship for D.A.W. (EP/ I004122) and a Studentship for C.D.R. (EP/1651146). This project received the support of the PHC Dumont d’Urville 34165NB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Masters.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 773 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ja’o, A.M., Wann, D.A., Rankine, C.D. et al. Structural and thermochemical studies of pyrrolidine borane and piperidine borane by gas electron diffraction and quantum chemical calculations. Struct Chem 32, 205–213 (2021). https://doi.org/10.1007/s11224-020-01647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01647-0

Keywords

Navigation