Skip to main content
Log in

Vibrational spectra and theoretical calculations of a natural pentacyclic triterpene alcool isolated from Mucuna pruriens

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Nematode control is a significant problem in agriculture industry all over the world. The control is often made with the use of toxic chemicals which can bring detrimental effect to humans, animals, and the environment. Therefore, developing an alternative method of control has become an area of interest such as use of antagonistic plant. Among the variety of antagonist plant species, Mucuna genus are most commonly used. We have carried out a study of the secondary metabolites present on the aerial parts of Mucuna pruriens var. utilis, from which it was isolated and purified a pentacyclic triterpene alcohol, named glutinol. This is the first time the isolation of glutinol is described from this plant species. Identification of this natural product was carried out using infrared, Raman, and NMR spectroscopies. The assignment of the vibrational frequencies was assisted by theoretical calculations using two functionals (HF and B3LYP). Raman optical activity (ROA) frequencies were calculated to assist in te detailed identification of the broad band observed at 2926 cm−1 in the experimental Raman spectrum. The calculated ROA spectra for glutinol (S configuration for the carbon bonded to the hydroxyl group) and R-glutinol (R configuration for the carbon bonded to the hydroxyl group) are discussed to show the potential of this technique to determine the absolute configuration of natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rojano-Delgado AM, Cruz-ipolito, De Prado R et al (2012) Limited uptake, translocation and enhanced metabolic degradation contribute to glyposate tolerance in Mucuna pruriens var. utilis plants. Pytochemistry 73:34–41. https://doi.org/10.1016/j.pytochem.2011.09.007

  2. Demuner AJ, Barbosa LCDA, Do Nascimento JC et al (2003) Isolamento e avaliação da atividade nematicida de constituintes químicos de Mucuna cinerea contra Meloidogyne incognita e eterodera glycines. Quim Nova 26:335–339

    Article  CAS  Google Scholar 

  3. Misra L, Wagner H (2004) Alkaloidal constituents of Mucuna pruriens seeds. Pytochemistry 65:2565–2567. https://doi.org/10.1016/j.pytochem.2004.08.045

    Article  CAS  Google Scholar 

  4. Nogueira MA, De Oliveira JS, Ferraz S (1996) Nematicidal ydrocarbons from Mucuna aterrima. Pytochemistry 42:997–998. https://doi.org/10.1016/0031-9422(96)86994-9

    Article  CAS  Google Scholar 

  5. Daer C, Paris C, Le ô A-S et al (2010) A joint use of Raman and infrared spectroscopies for te identification of natural organic media used in ancient varnises. J Raman Spectrosc 41:1204–1209. https://doi.org/10.1002/jrs.2693

    Article  CAS  Google Scholar 

  6. Nafie LA (2015) Recent advances in linear and non-linear Raman spectroscopy Part IX. J Raman Spectrosc 46:1173–1190. https://doi.org/10.1002/jrs.4842

    Article  CAS  Google Scholar 

  7. Alula MT, Mengesa ZT, Mwenesongole E (2018) Advances in surface-enhanced Raman spectroscopy for analysis of parmaceuticals: a review. Vib Spectrosc 98:50–63. https://doi.org/10.1016/j.vibspec.2018.06.013

    Article  CAS  Google Scholar 

  8. Jestel NL (2010) Raman spectroscopy. Process Analytical Technology. Jon Wiley & Sons Ltd, Cicester, pp 195–243

    Chapter  Google Scholar 

  9. Oliveira RP, Demuner AJ, Alvarenga ES et al (2018) A novel alkaloid isolated from Crotalaria paulina and identified by NMR and DFT calculations. J Mol Struct 1152:337–343. https://doi.org/10.1016/j.molstruc.2017.09.065

    Article  CAS  Google Scholar 

  10. arder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Teory Comput 12:281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  Google Scholar 

  11. Jorgensen WL, Tirado-Rives J (1988) Te OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666. https://doi.org/10.1021/ja00214a001

    Article  PubMed  CAS  Google Scholar 

  12. Schrödinger Release 2019-1: Maestro, Schrödinger, LLC, New York, NY, 2019

  13. Frisc MJ, Trucks GW, Sclegel B, Scuseria GE, Robb MA, Ceeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji, Li X, Caricato M, Marenic AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, ratcian P, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, enderson T, Ranasinge D, Zakrzewski VG, Gao J, Rega N, Zeng G, Liang W, ada M, Eara M, Toyota K, Fukuda R, asegawa J, Isida M, Nakajima T, onda Y, Kitao O, Nakai, Vreven T, Trossell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, eyd JJ, Broters EN, Kudin KN, Staroverov VN, Keit TA, Kobayasi R, Normand J, Ragavacari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Octerski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Revision C.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  14. Origin 2017, OriginLab Corporation, Northampton, MA, USA

  15. Giang PM, Nga DT, ai NX, Son PT (2009) Furter chemical constituents Furter chemical constituents of Scoparia dulcis L. (Scropulariaceae) originating in Vietnam. Vietnam J Chem 47:640–646

    Google Scholar 

  16. Pérez-Castorena AL (2014) Triterpenes and oter metabolites from Tiboucina urvilleana. J Mex Chem Soc 58:218–222

    Google Scholar 

  17. Gonzalez AG, Ferro EE, Ravelo AG (1987) Triterpenes from Maytenus horrida. Pytochemistry 26:2785–2788. https://doi.org/10.1016/S0031-9422(00)83591-8

    Article  CAS  Google Scholar 

  18. Tanaka R, Ida T, Kita S et al (1996) A 3,4-SECO-8β-fernadienoic acid and oter constituents from Euporbia Camaesyce. Pytochemistry 41:1163–1168. https://doi.org/10.1016/0031-9422(95)00721-0

    Article  CAS  Google Scholar 

  19. Park BY, Min BS, O SR et al (2004) Isolation and anticomplement activity of compounds from Dendropanax morbifera. J Ethnopharmacol 90:403–408. https://doi.org/10.1016/j.jep.2003.11.002

    Article  PubMed  CAS  Google Scholar 

  20. Coudary MI, Azizuddin JS, Atta-ur-Raman (2005) Bioactive phenolic compounds from a medicinal licen, Usnea longissima. Pytochemistry 66:2346–2350. https://doi.org/10.1016/j.pytochem.2005.06.023

    Article  Google Scholar 

  21. Oliveira RP, Demuner AJ, Alvarenga ES et al (2017) Experimental and theoretical studies on te characterization of monocrotaline by infrared and Raman spectroscopies. J Mol Struct 1135:228–233. https://doi.org/10.1016/j.molstruc.2017.01.050

    Article  CAS  Google Scholar 

  22. Dudek M, Zajac G, Szafraniec E et al (2019) Raman Optical Activity and Raman spectroscopy of carbohydrates in solution. Spectrocim Acta Part A Mol Biomol Spectrosc 206:597–612. https://doi.org/10.1016/j.saa.2018.08.017

    Article  CAS  Google Scholar 

  23. Ostovar Pour S, Barron LD, Mutter ST, Blanch EW (2018) Raman Optical Activity. In: Chiral Analysis, Second Edition, Elsevier, pp 249–291, Chapter 6. https://doi.org/10.1016/B978-0-444-64027-7.00006-9

    Chapter  Google Scholar 

  24. Nafie LA, Dukor RK (2018) Vibrational Optical Activity. In: Chiral Analysis, Second Edition. Elsevier, pp 201–247, Chapter 5. https://doi.org/10.1016/B978-0-444-64027-7.00005-7

    Chapter  Google Scholar 

  25. Qiu S, Li G, Liu P et al (2010) Chirality transition in te epoxidation of (-)-α-pinene and successive ydrolysis studied by Raman optical activity and DFT. Pys Chem Chem Pys 12:3005–3013. https://doi.org/10.1039/b919993d

    Article  CAS  Google Scholar 

  26. Superci S, Scafato P, Gorecki M, Pescitelli G (2018) Absolute configuration determination by quantum mecanical calculation of ciroptical spectra: basics and applications to fungal metabolites. Curr Med Chem 25:287–320. https://doi.org/10.2174/0929867324666170310112009

  27. Lovcik MA, Fráter G, Goeke A, ug W (2008) Total syntesis of junionone, a natural monoterpenoid from Juniperus communis L., and determination of te absolute configuration of te naturally occurring enantiomer by ROA spectroscopy. Chem Biodivers 5:126–139. https://doi.org/10.1002/cbdv.200890003

    Article  Google Scholar 

  28. Sakamoto A, Oya N, asegawa T et al (2012) Determination of te absolute stereochemistry of limonene and alpa-santalol by Raman optical activity spectroscopy. Nat Prod Commun 7:419–421. https://doi.org/10.1177/1934578X1200700401

    Article  PubMed  CAS  Google Scholar 

  29. Monteiro AF, Batista JM, Macado MA et al (2015) Structure and absolute configuration of diterpenoids from ymenaea stigonocarpa. J Nat Prod 78:1451–1455. https://doi.org/10.1021/acs.jnatprod.5b00166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Daniel Lee (University of Minnesota) for proofreading the manuscript. Thanks to MSI (University of Minnesota) for the calculations support and resources.

Funding

This work was financially supported by the CNPq, CAPES, RQ-MG, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elson S. Alvarenga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All authors certify and assert that no animals or humans were used to obtain results reported in this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaneda, S.M.B., Alvarenga, E.S., Demuner, A.J. et al. Vibrational spectra and theoretical calculations of a natural pentacyclic triterpene alcool isolated from Mucuna pruriens. Struct Chem 31, 599–607 (2020). https://doi.org/10.1007/s11224-019-01431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01431-9

Keywords

Navigation