Skip to main content
Log in

Computational studies on the mechanism and selectivity of Al8O12 nanocluster for different elimination reactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum mechanical investigations are performed to show the mechanism and selectivity of Al8O12 nanocluster during different competing elimination reactions of acyclic and cyclic compounds. The studies reveal that, the nanocluster can selectively eliminate hydrogen halide in presence of both hydroxyl and halide as leaving groups. Furthermore, for competing dehydrohalogenations, the chemoselectivity trend is just opposite to the leaving character of the halides, i.e., the fluoride is eliminated first. The regioselectivity of the nanocluster is also remarkable during elimination. Most importantly, the dehydrohalogenations proceed through a so called ’unfavorable’ syn-elimination pathway thereby producing stereospecified products which are difficult to be produced via normal base catalytic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanabe K (1970) Solid acids and bases. Acad Press, New York

    Book  Google Scholar 

  2. Ross JR (2011) Heterogeneous catalysis: fundamentals and applications. Elsevier

  3. Wefers K, Misra C (1987) Oxides and hydroxides of aluminum. Alcoa Laboratories, Pittsburgh

    Google Scholar 

  4. Knözinger H (1968) Dehydration of alcohols on aluminum oxide. Angewandte Chemie Int Edn English 7(10):791–805

    Article  Google Scholar 

  5. Fan D, Dai DJ, Wu HS (2012) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6(1):101–115

    Article  Google Scholar 

  6. Jia W, Wu Q, Lang X, Hu C, Zhao G, Li J, Zhu Z (2015) Influence of lewis acidity on catalytic activity of the porous alumina for dehydrofluorination of 1, 1, 1, 2-tetrafluoroethane to trifluoroethylene. Catal Lett 145(2):654–661

    Article  CAS  Google Scholar 

  7. DeWilde JF, Czopinski CJ, Bhan A (2014) Ethanol dehydration dehydrogenation on γ-al2o3 Mechanism of acetaldehyde formation. ACS Catal 4(12):4425–4433

    Article  CAS  Google Scholar 

  8. Christiansen MA, Mpourmpakis G, Vlachos DG (2013) Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-al2o3 (100). Acs Catal 3(9):1965–1975

    Article  CAS  Google Scholar 

  9. Busca G (1999) The surface acidity of solid oxides and its characterization by ir spectroscopic methods. An attempt at systematization. Phys Chem Chem Phys 1(5):723–736

    Article  CAS  Google Scholar 

  10. Blumenfeld A, Fripiat J (1997) Acid sites topology in aluminas and zeolites from high-resolution solid-state nmr. Top Catal 4(1–2):119–129

    Article  CAS  Google Scholar 

  11. Wischert R, Copéret C, Delbecq F, Sautet P (2011) Optimal water coverage on alumina: a key to generate lewis acid–base pairs that are reactive towards the c–h bond activation of methane. Angewandte Chemie Int Edn 50(14):3202–3205

    Article  CAS  Google Scholar 

  12. Wischert R, Laurent P, Copéret C, Delbecq F, Sautet P (2012) γ-alumina: the essential and unexpected role of water for the structure, stability, and reactivity of ”defect” sites. J Am Chem Soc 134(35):14430–14449

    Article  CAS  Google Scholar 

  13. Comas-Vives A, Schwarzwälder M, Copéret C, Sautet P (2015) Carbon–carbon bond formation by activation of ch3f on alumina. J Phys Chem C 119(13):7156–7163

    Article  CAS  Google Scholar 

  14. Roy S, Mpourmpakis G, Hong DY, Vlachos DG, Bhan A, Gorte R (2012) Mechanistic study of alcohol dehydration on γ-al2o3. ACS Catal 2(9):1846–1853

    Article  CAS  Google Scholar 

  15. Fang Z, Wang Y, Dixon DA (2015) Computational study of ethanol conversion on al8o12 as a model for γ-al2o3. J Phys Chem C 119(41):23413–23421

    Article  CAS  Google Scholar 

  16. Wittbrodt J, Hase W, Schlegel H (1998) Ab initio study of the interaction of water with cluster models of the aluminum terminated (0001) α-aluminum oxide surface. J Phys Chem B 102(34):6539–6548

    Article  CAS  Google Scholar 

  17. Kostetskyy P, Mpourmpakis G (2015) Structure-activity relationships in the production of olefins from alcohols and ethers: a first-principles theoretical study. Catal Sci Technol 5(9):4547–4555

    Article  CAS  Google Scholar 

  18. Casarin M, Maccato C, Vittadini A (2000) Theoretical study of the chemisorption of co on al2o3 (0001). Inorgan Chem 39(23):5232–5237

    Article  CAS  Google Scholar 

  19. Bermudez VM (2007) Quantum-chemical study of the adsorption of dmmp and sarin on γ-al2o3. J Phys Chem C 111(9):3719–3728

    Article  CAS  Google Scholar 

  20. Biswas S, Pramanik A, Sarkar P (2016) Computational studies on the reactivity of alkyl halides over (al2o3) n nanoclusters: an approach towards room temperature dehydrohalogenation. Nanoscale 8:10205–10218

    Article  CAS  Google Scholar 

  21. Liu X (2008) Drifts study of surface of γ-alumina and its dehydroxylation. J Phys Chem C 112(13):5066–5073

    Article  CAS  Google Scholar 

  22. Fu Q, Wagner T, Rühle M (2006) Hydroxylated α-al2o3 (0001) surfaces and metal/ α-al2o3 (0001) interfaces. Surf Sci 600(21):4870–4877

    Article  CAS  Google Scholar 

  23. Pistarino C, Finocchio E, Romezzano G, Brichese F, Di Felice R, Busca G, Baldi M (2000) A study of the catalytic dehydrochlorination of 2-chloropropane in oxidizing conditions. Indus Eng Chem Res 39(8):2752–2760

    Article  CAS  Google Scholar 

  24. Bai S, Dai Q, Chu X, Wang X (2016) Dehydrochlorination of 1,2-dichloroethane over ba-modified al2o3 catalysts. RSC Adv 6(14):5618–5630

    Article  Google Scholar 

  25. Lowry TH, Richardson KS (1981) Mechanism and theory in organic chemistry. Harper & Row, New York

    Google Scholar 

  26. Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley

  27. Saunders WH, Cockerill AF (1973) Mechanisms of elimination reactions. Wiley-Interscience

  28. Misono M, Yoneda Y (1972) Stereochemistry and isotope effect in the dehydrobromination of 2-bromobutane over solid catalyst. Chem Lett 7:551–552

    Article  Google Scholar 

  29. Misono M (1973) Stereoselectivity of the elimination reactions of alkyl halides over silica gel and alkali-treated silica gel. J Catal 30(2):226–234

    Article  CAS  Google Scholar 

  30. Misono M, Aoki Y, Yoneda Y (1976) Stereochemical studies of elimination reactions of 2-bromobutane and 2, 3-dibromobutane over alkali-ion exchanged silica gels. Bull Chem Soc Jpn 49(3):627–633

    Article  CAS  Google Scholar 

  31. Misono M, Takizawa T, Yoneda Y (1978) Dehydrobromination of bromoalkanes over cabosil and alkali-ion-exchanged cabosils: I. A stereochemical study. J Catal 52(3):397–405

    Article  CAS  Google Scholar 

  32. Lee JG, Bartsch RA (1979) Dehydrohalogenation by complex base. Preferential loss of” poorer” halogen leaving groups. J Am Chem Soc 101(1):228–229

    Article  CAS  Google Scholar 

  33. Croft AP, Bartsch RA (1983) Complex-base-promoted syn eliminations from trans-1-bromo-2-chlorocyclohexane. J Org Chem 48(6):876–879

    Article  CAS  Google Scholar 

  34. Croft AP, Bartsch RA (1994) Comparison of β-chloro-activated, syn and anti dehydrochlorinations induced by complex base. J Org Chem 59(7):1930–1932

    Article  CAS  Google Scholar 

  35. Blanc EJ, Pines H (1968) Alumina: catalyst and support. xxxvii. Mechanism of dehydration of cis-and trans-2-alkyl-, 2-phenyl-and 3-tert-butylcyclohexanols over alumina catalysts. J Org Chem 33(5):2035–2043

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision C.01, gaussian Inc. Wallingford CT

  37. Zhao Y, Truhlar DG (2008) The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor Chem Acc 120(1-3):215–241

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101

    Article  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 4(11):1849–1868

    Article  CAS  Google Scholar 

  40. Sengupta T, Das S, Pal S (2015) Oxidative addition of the c–i bond on aluminum nanoclusters. Nanoscale 7(28):12109–12125

    Article  CAS  Google Scholar 

  41. Ahubelem N, Altarawneh M, Dlugogorski BZ (2014) Dehydrohalogenation of ethyl halides. Tetrahedron Lett 55(35):4860–4868

    Article  CAS  Google Scholar 

  42. Rosenbach N, Mota CJ (2005) A dft study of sn2 and e2 reactions of butylhalides on zeolite y: The effect of the leaving group. J Mol Struct Theochem 731(1):157–161

    Article  CAS  Google Scholar 

  43. McQuarrie DA (2000) Statistical Mechanics. University Science Books, Sausalito

    Google Scholar 

  44. Boys SF, Bernardi Fd (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  45. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  46. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107–115

    Article  CAS  Google Scholar 

  47. Canneaux S, Bohr F, Henon E (2014) Kisthelp: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35(1):82–93

    Article  CAS  Google Scholar 

  48. Foster J, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218

    Article  CAS  Google Scholar 

  49. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  50. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  51. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem So 108(19):5708–5711

    Article  CAS  Google Scholar 

  52. Mendez F, Gazquez JL (1994) Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116(20):9298–9301

    Article  CAS  Google Scholar 

  53. House HO, Ro RS (1958) The stereochemistry of elimination reactions involving halohydrin derivatives and metals1. J Am Chem Soc 80(1):182–187

    Article  CAS  Google Scholar 

  54. Cho S, Kang S, Keum G, Kang SB, Han SY, Kim Y (2003) Indium-mediated reductive elimination of halohydrins. J Org Chem 68(1):180–182

    Article  CAS  Google Scholar 

  55. Bartlett PD (1935) Cis-and trans-chlorohydrins of cyclohexene1. J Am Chem Soc 57(1):224–227

    Article  CAS  Google Scholar 

  56. Posner GH, Gurria GM (1976) Organic reactions at alumina surfaces. Elimination reactions effected by dehydrated chromatographic alumina. J Org Chem 41(3):578–580

    Article  CAS  Google Scholar 

  57. Hudlicky M (1986) Dehydrohalogenations of cis-and trans-1-bromo-2-flourocyclohexanes. J Fluor Chem 32(4):441–452

    Article  CAS  Google Scholar 

  58. Bunnett J (1962) The mechanism of bimolecular β-elimination reactions. Angewandte Chemie Int Edn English 1(5):225–235

    Article  CAS  Google Scholar 

  59. Kobayashi T, Ohmiya H, Yorimitsu H, Oshima K (2008) Cobalt-catalyzed regioselective dehydrohalogenation of alkyl halides with dimethylphenylsilylmethylmagnesium chloride. J Am Chem Soc 130(34):11276–11277

    Article  CAS  Google Scholar 

  60. Bartsch RA, Zavada J (1980) Stereochemical and base species dichotomies in olefin-forming e2 eliminations. Chem Rev 80(6):453–494

    Article  CAS  Google Scholar 

  61. Stirling CJ (1979) Leaving groups and nucleofugality in elimination and other organic reactions. Acc Chem Res 12(6):198–203

    Article  CAS  Google Scholar 

  62. Yamawaki J, Kawate T, Ando T, Hanafusa T (1983) Potassium fluoride on alumina. An efficient solid base for elimination, addition, and condensation. Bull Chem Soc Jpn 56(6):1885–1886

    Article  CAS  Google Scholar 

  63. Kopka IE, Nowak MA, Rathke MW (1986) Dehydrohalogenation reactions using hindered lithium dialkylamide bases. Synth Commun 16(1):27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from CSIR (F. No. 01(6762)/17) and UGC (F. No. 43-174/2014 (SR)), New Delhi, Govt. of India are gratefully acknowledged. A.P. expresses his sincere gratitude to Dr. N.A. Begum and Dr. A. Hazra, Dept. of Chemistry, Visva-Bharati for sharing their experiences in synthetic Organic Chemistry. A.P. also acknowledges Dr. D.S. Kothari Postdoctoral Fellowship provided by UGC, New Delhi, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anup Pramanik or Pranab Sarkar.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.74 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Pramanik, A. & Sarkar, P. Computational studies on the mechanism and selectivity of Al8O12 nanocluster for different elimination reactions. Struct Chem 28, 1895–1906 (2017). https://doi.org/10.1007/s11224-017-0974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0974-3

Keywords

Navigation