Skip to main content
Log in

Statistical Error Analysis on White-Light Filter Ratio Experiments to Measure Electron Parameters

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The filter-ratio technique to remotely measure electron temperature and speed using four color filters in visible light and a polarization camera was described in detail in previous works, in which we quantified the systematic error associated with using models of a symmetric corona to interpret results from an asymmetric corona. We also showed the criteria applied to select the bandwidths of filters and the pros and cons of replacing the traditional linear polarizer with a polarization camera to measure pB. What started in the 1990s by ground experiments conducted during total solar eclipses that lasted for a few minutes led to a balloon-borne experiment lasting eight hours in 2019 and will blossom into a space experiment on the International Space Station in 2023. Due to constraints on the bandwidths of the four filters, a successful mission requires quantification of the statistical error using Monte Carlo simulations to generate two feasibility profiles, which are unique to the design parameters of the coronagraph, to comprehend the feasibility to measure temperature and speed within the desired temporal and spatial resolutions. For the statistical error analysis, we use modeled K- and F-corona profiles, representative theoretical diffraction, scattering, and vignetting profiles, assumed efficiencies for lenses, mirrors, and polarizers, assumed detector properties on quantum efficiency, full-well depth, dark noise, and read noise, and assumed instrument properties on aperture diameter, solid angle, and pixel resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Billings, D.E.: 1966, A Guide to the Solar Corona. Academic Press, New York.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cram, L.E.: 1976, Determination of the temperature of the solar corona from the spectrum of the electron-scattering continuum. Solar Phys. 48, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Davila, J.M., Rabin, D,M., Reginald, N., Gong, Q., Shah, N., Chamberlin, P.C.: 2018 Spherical occulter coronagraph cubesat. US Patent 9,921,099 B1 awarded on March, 20, 2018. ntrs.nasa.gov/api/citations/20180002534/downloads/20180002534.pdf.

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Newmark, J., Yashiro, S., Mäkelä, P., Reginald, N., Thakur, N., Gong, Q., Kim, Y.-H., Cho, K.-S., Choi, S.-H., Baek, J.-H., Bong, S.-C., Yang, H.-S., Park, J.-Y., Kim, J.-H., Park, Y.-D., Lee, J.-O., Kim, R.-S., Lim, E.-K.: 2021, The Balloon-Borne investigation of temperature and speed of electrons in the corona (BITSE): mission description and preliminary results. Solar Phys. 296, 15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, I.S., Nasonova, L.P., Lisin, D.V., Popov, V.V., Krusanova, N.L.: 2017, Imaging the structure of the low K-corona. J. Geophys. Res. 122, 77. DOI. ADS.

    Article  Google Scholar 

  • Koutchmy, S., Lamy, P.L.: 1985, The F-corona and the circum-solar dust evidences and properties (ir). In: Giese, R.H., Lamy, P. (eds.) IAU Colloq. 85: Properties and Interactions of Interplanetary Dust, Astrophys. Space Sci. Lib. 119, Reidel, Dordrecht, 63. DOI. ADS.

    Chapter  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.L.: 1998, Tracing the electron density from the corona to 1 au. Solar Phys. 183, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemaire, J.F., Stegen, K.: 2016, Improved determination of the location of the temperature maximum in the corona. Solar Phys. 291, 3659. DOI. ADS.

    Article  ADS  Google Scholar 

  • Loreggia, D., Fineschi, S., Capobianco, G., Bemporad, A., Cast, M., Landini, F., Nicolini, G., Zangrinni, L., Massone, G., Belluso, M., Thizy, J.-H., Bong, C., Galy, C., Hermans, A., Franco, P., Pirard, F., Rossi, L., Buckley, S., Spillane, R., O’Shea, M., Galano, D., Versluya, J., Hernan, K., Accatino, L.: 2021, PROBA-3 mission and the Shadow Position Sensors: metrology measurement concept and budget. Adv. Space Res. 67, 3793. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, I.: 1992, The solar F-corona: calculations of the optical and infrared brightness of circumstellar dust. Astron. Astrophys. 261, 329. ADS.

    ADS  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • November, L.J., Koutchmy, S.: 1996, White-light coronal dark threads and density fine structure. Astrophys. J. 466, 512. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L.: 2001, MACS, an instrument, and a methodology for simultaneous and global measurements of the coronal electron temperature and the solar wind velocity on the solar corona. PhD thesis, Univ. Delaware. ADS.

  • Reginald, N.L., Davila, J.M.: 2000, MACS for global measurement of the solar wind velocity and the thermal electron temperature during the total solar eclipse on 11 August 1999. Solar Phys. 195, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N., Rastaetter, L.: 2019, Dependence of DOLP on coronal electron temperature, speed, and structure. Solar Phys. 294, 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N., Newmark, J., Rastaetter, L.: 2019, Measuring electron temperature using a linear polarizer versus a polarization camera. Solar Phys. 294, 100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N., Newmark, J., Rastaetter, L.: 2020, Synoptic measurements of electron temperature and speed in the solar corona with next generation white-light coronagraph. Solar Phys. 295, 95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N.L., St. Cyr, O.C., Davila, J.M., Rabin, D.M., Guhathakurta, M., Hassler, D.M.: 2009, Electron-temperature maps of the low solar corona: ISCORE results from the total solar eclipse of 29 March 2006 in Libya. Solar Phys. 260, 347. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reginald, N., St. Cyr, O., Davila, J., Rastaetter, L., Török, T.: 2018, Evaluating uncertainties in coronal electron temperature and radial speed measurements using a simulation of the Bastille day eruption. Solar Phys. 293, 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • Saito, K., Poland, A.I., Munro, R.H.: 1977, A study of the background corona near solar minimum. Solar Phys. 55, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Török, T., Downs, C., Linker, J.A., Lionello, R., Titov, V.S., Mikić, Z., Riley, P., Caplan, R.M., Wijaya, J.: 2018, Sun-to-Earth MHD simulation of the 2000 July 14 “Bastille day” eruption. Astrophys. J. 856, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11, 135. ADS.

    ADS  Google Scholar 

  • Wang, T., Reginald, N.L., Davila, J.M., St. Cyr, O.C., Thompson, W.T.: 2017, Variation in coronal activity from solar cycle 24 minimum to maximum using three-dimensional reconstructions of the coronal electron density from STEREO/COR1. Solar Phys. 292, 97. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewer for their time for reviewing the paper and for the valuable comments. The responses for many of the comments were incorporated in the paper, which greatly improved the clarity of the presentation. N.L. Reginald was supported by NASA grant PL10A-125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Reginald.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reginald, N., Newmark, J. & Rastaetter, L. Statistical Error Analysis on White-Light Filter Ratio Experiments to Measure Electron Parameters. Sol Phys 296, 146 (2021). https://doi.org/10.1007/s11207-021-01887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01887-1

Keywords

Navigation