Skip to main content
Log in

Enhanced photocatalytic degradation of antibiotic levofloxacin by Ag3PO4/C3N4/ZnO nanocomposite

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The antibiotic levofloxacin was degraded by three steps of calcination, hydrothermal reaction and in situ precipitation using g-C3N4 as the substrate, and ZnO and Ag3PO4 were effectively combined to form a ternary photocatalyst of Ag3PO4/C3N4/ZnO. The morphology, structure and optical properties of the photocatalytic materials were investigated using XRD, FTIR, SEM, XPS and UV–Vis, and it was found that the three monomer materials, Ag3PO4, g-C3N4 and ZnO, formed Z-type heterojunctions, which increased the active sites of the photocatalytic materials and broadened the visible absorption spectra of the synthesized composites. The best degradation effect of Ag3PO4/C3N4/ZnO on 10-mg/L levofloxacin was achieved with the addition of 10% ZnO, the dosage of 0.5 g/L and the pH value of 5. The composites were characterized by the high efficiency of degradation of levofloxacin. The degradation rate of levofloxacin was maintained as high as 78.2% after 5 cycles of the experiment, which demonstrated the excellent recyclability of the photocatalytic material. Levofloxacin was decomposed by the Ag3PO4/C3N4/ZnO photocatalyst, and by analyzing the results of the electron spin resonance experiments and the capture test results, it was found that ·OH only played a small role, and h+ and O2 were the main oxidants. Based on the coupled liquid mass spectrometry analysis, the main steps in the degradation process of levofloxacin were the removal of methyl and carboxyl groups, the release of fluorine and the destruction of piperazine and quinoline rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B.H. Tan, Y. Fang, Q.L. Chen, X.Q. Ao, Y. Cao, J. Colloid. Interf. Sci. 601, 581 (2021)

    CAS  Google Scholar 

  2. G.Y. Chen, Y. Yu, L. Liang, X.G. Duan, R. Li, J. Hazard. Mater. 408, 124461 (2021)

    CAS  PubMed  Google Scholar 

  3. B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P. Show, J. Hazard. Mater. 400, 122961 (2020)

    PubMed  Google Scholar 

  4. M. Kumar, S. Jaiswal, K.K. Sodhi, P. Shree, Environ. Int. 124, 448 (2019)

    CAS  PubMed  Google Scholar 

  5. W. Shi, F. Guo, S. Yuan, Appl. Catal. B-Environ. 209, 720 (2017)

    CAS  Google Scholar 

  6. Z. Yu, X. Zhang, H.H. Ngo, W.S. Guo, Bioresource. Technol. 268, 599 (2018)

    CAS  Google Scholar 

  7. M.T. Do, D.C. Stuckey, Bioresource Technol. 289, 121683 (2019)

    CAS  Google Scholar 

  8. D.S.R. Srinivasa, G. Qiu, Y. Ting, Chem. Eng. J. 334, 198 (2018)

    Google Scholar 

  9. G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Chem. Eng. J. 217, 119 (2013)

    CAS  Google Scholar 

  10. L. Wang, D. Hu, X. Kong, J.G. Liu, Chem. Eng. J. 346, 38 (2018)

    CAS  Google Scholar 

  11. B.Y. Huang, Y.G. Liu, B. Li, S.B. Liu, Carbohyd. Polym. 157, 576 (2017)

    CAS  Google Scholar 

  12. C.Y. Liang, D. Wei, S.Y. Zhang, Q.H. Ren, Ecotox. Environ. Safe. 210, 111885 (2021)

    CAS  Google Scholar 

  13. V. Sharma, R. Kumar, K. Pakshirajan, G. Pugazhenthi, Powder. Technol. 321, 259 (2017)

    CAS  Google Scholar 

  14. S.Z. Li, X.Y. Li, D.Z. Wang, Sep. Purif. Technol. 34, 109 (2004)

    CAS  Google Scholar 

  15. Y.B. Xiang, Y.H. Huang, B. Xiao, X.Y. Wu, Appl. Sur. Sci. 513, 145820 (2020)

    CAS  Google Scholar 

  16. Y. Chen, Y.G. Li, N.D. Luo, W.K. Shang, Chem. Eng. J. 429, 132577 (2022)

    CAS  Google Scholar 

  17. C. Fu, X.L. Yi, Y. Liu, H. Zhou, Chemosphere 257, 127294 (2020)

    CAS  PubMed  Google Scholar 

  18. G. Xian, L.J. Niu, G.M. Zhang, N.Y. Zhou, Chemosphere 242, 125191 (2020)

    CAS  PubMed  Google Scholar 

  19. J. Luo, X.M. Ning, L. Zhan, X.S. Zhou, Sep. Purif. Technol. 255, 117691 (2021)

    CAS  Google Scholar 

  20. C.Y. Zhou, D.L. Huang, P. Xu, G.M. Zeng, Chem. Eng. J. 370, 1077 (2019)

    CAS  Google Scholar 

  21. F. Deng, L.N. Zhao, X.B. Luo, S.L. Luo, Chem. Eng. J. 333, 423 (2018)

    CAS  Google Scholar 

  22. M.A. Kausor, S.S. Gupta, D. Chakrabortty, J. Saudi. Chem. Soc. 24, 20 (2020)

    Google Scholar 

  23. W.J. Xue, D.L. Huang, X.J. Wen, S. Chen, J. Hazard. Mater. 390, 122128 (2020)

    CAS  PubMed  Google Scholar 

  24. N. Raza, W. Raza, H. Gul, M. Azam, J. Lee, J. Clean. Prod. 254, 120031 (2020)

    CAS  Google Scholar 

  25. C.H. Mu, Y. Zhang, W.Q. Cui, Y.H. Liang, Appl. Catal. B-Environ. 212, 41 (2017)

    CAS  Google Scholar 

  26. G.P. Li, Y.X. Wang, L.K. Mao, RSC. Adv. 4, 53649 (2014)

    CAS  Google Scholar 

  27. L. Tian, X.F. Yang, X.K. Cui, Q.Q. Liu, Appl. Surf. Sci. 463, 9 (2019)

    CAS  Google Scholar 

  28. X.Y. Zhang, B.R. Liu, Y. Yang, W.B. Liu, J. Environ. Chem. Eng. 10, 107171 (2022)

    CAS  Google Scholar 

  29. Y. Naciri, A. Hsini, A. Bouziani, R. Djellabi, Z. Ajmal, Crit. Rev. Env. Sci. Technol. 52, 2339 (2022)

    CAS  Google Scholar 

  30. H. Liu, X. Wang, Z. Lan, Ceram. Int. 45, 16682 (2019)

    CAS  Google Scholar 

  31. Y.Y. Wu, H.D. Ji, Q.M. Liu, Z.Y. Sun, J. Hazard. Mater. 424, 127563 (2022)

    CAS  PubMed  Google Scholar 

  32. Y. Naciri, A. Hsini, Z. Ajmal, A. Bouddouch, J. Colloid. Interf. Sci. 572, 269 (2020)

    CAS  Google Scholar 

  33. D.X.M. Vargas, J.D.L.R. Rivera, C.J. Lucio-Ortiz, A.H. Ramirez, Appl. Catal. B-Environ. 179, 249 (2015)

    Google Scholar 

  34. P. Zheng, W. Zhou, Y.B. Wang, D.Z. Ren, Appl. Surf. Sci. 512, 144549 (2020)

    CAS  Google Scholar 

  35. X.G. Meng, P.X. Zong, L. Wang, F. Yang, Catal. Commun. 134, 105860 (2020)

    CAS  Google Scholar 

  36. S.N. Zhang, S.J. Zhang, L.M. Song, J. Hazard. Mater. 293, 72 (2015)

    CAS  PubMed  Google Scholar 

  37. L.Y. Wang, Z.Y. Bian, Chemosphere 239, 124815 (2020)

    CAS  PubMed  Google Scholar 

  38. F. Kabir, S.N. Sakib, Optik 180, 684 (2019)

    CAS  Google Scholar 

  39. A.B. Trench, R. Alvarez, V. Teodoro, L.G.D. Trindade, Mater. Chem. Phys. 280, 125710 (2022)

    CAS  Google Scholar 

  40. S.J. Liao, H. Donggen, D.H. Yu, Y.L. Su, J. Photoch. Photobio. A. 168, 7 (2004)

    CAS  Google Scholar 

  41. X.Y. Li, L. Wang, L. Zhang, S.P. Zhuo, Appl. Surf. Sci. 419, 586 (2017)

    CAS  Google Scholar 

  42. Y.L. Liu, J.M. Wu, Nano Energy 56, 74 (2019)

    CAS  Google Scholar 

  43. T.B. Nguyen, C.P. Huang, R.A. Doong, Sci. Total. Environ. 646, 745 (2019)

    CAS  PubMed  Google Scholar 

  44. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, Chem. Rev. 116, 7159 (2016)

    CAS  PubMed  Google Scholar 

  45. J.Q. Liu, C.J. Guo, N.N. Wu, C.G. Li, Chem. Eng. J. 435, 134627 (2022)

    CAS  Google Scholar 

  46. M. Ge, W. Liu, X.R. Hu, Z.L. Li, J. Phys. Chem. Solids. 109, 1 (2017)

    CAS  Google Scholar 

  47. J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, Adv. Energy. Mater. 8, 1701503 (2018)

    Google Scholar 

  48. L. Zhou, W. Zhang, L. Chen, H.P. Deng, Catal. Commun. 100, 191 (2017)

    CAS  Google Scholar 

  49. Y. Wang, M.Y. Wu, W.Y. Lei, Y. Shen, F.F. Li, Mate. Lett. 309, 131451 (2022)

    CAS  Google Scholar 

  50. L.W. Chen, S.J. Yang, Y. Huang, B.G. Zhang, F.X. Kang, J. Hazard. Mater. 371, 566 (2019)

    CAS  PubMed  Google Scholar 

  51. J. Zhang, M. Yan, X.Z. Yuan, M.Y. Si, L.B. Jiang, J. Colloid. Interf. Sci. 529, 11 (2018)

    CAS  Google Scholar 

  52. Z. Hu, M. Ge, C.S. Guo, Chemosphere 268, 128834 (2021)

    CAS  PubMed  Google Scholar 

  53. Y. Yu, B.H. Yao, Y.Q. He, B.Y. Cao, Appl. Surf. Sci. 528, 146819 (2020)

    CAS  Google Scholar 

  54. C. Li, B.Y. Song, M.S. Lv, G.L. Chen, Chem. Eng. J. 446, 136846 (2022)

    CAS  Google Scholar 

  55. H.F. Fu, Z.Y. Feng, S.S. Liu, P. Wang, Chinese. Chem. Lett. 34, 107425 (2023)

    CAS  Google Scholar 

  56. S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, Adv. Mater. 25, 2452 (2013)

    CAS  PubMed  Google Scholar 

  57. H. Tang, R. Wang, C.X. Zhao, Z.P. Chen, Chem. Eng. J. 374, 1064 (2019)

    CAS  Google Scholar 

  58. F. Qin, H.P. Zhao, G.F. Li, H. Yang, Nanoscale 6, 5402 (2014)

    CAS  PubMed  Google Scholar 

  59. G.D. Fan, S.W. Yang, B.H. Du, J. Luo, Environ. Res. 204, 112032 (2022)

    CAS  PubMed  Google Scholar 

  60. A. Ali, T. Raza, A. Ahmed, M.S. Ali, Synthetic. Met. 287, 117072 (2022)

    CAS  Google Scholar 

  61. Q. Guan, S. Khan, Z.H. Wang, Q. Liu, L.L. Zhang, J. Alloys Compd. 852, 156947 (2021)

    CAS  Google Scholar 

  62. R.K. Dharman, A. Mariappan, T.H. Oh, Surf. Interfaces. 39, 102998 (2023)

    CAS  Google Scholar 

  63. X. Zhang, Z. Chen, X.M. Li, Y. Wu, J.F. Zheng, Y.Q. Li, Sep. Purif. Technol. 310, 123116 (2023)

    CAS  Google Scholar 

  64. M.K. Laura, M.D. Jeanna, E.S. Nicoie, Diagn. Micr. Infec. Dis. 29, 115946 (2023)

    Google Scholar 

  65. Z.Z. Ai, Y.L. Shao, B. Chang, L. Zhang, Appl. Catal. B-Environ. 259, 118077 (2019)

    CAS  Google Scholar 

  66. P. Ju, Y. Wang, Y. Sun, D. Zhang, J. Colloid. Interf. Sci. 579, 431 (2020)

    CAS  Google Scholar 

  67. H.B. Sun, P.F. Qin, Z.B. Wu, C.J. Liao, J. Alloy. Compd. 834, 155211 (2020)

    CAS  Google Scholar 

Download references

Funding

The authors appreciate for funding sources by the National Natural Science Foundation of China (Grants No. 52100071).

Author information

Authors and Affiliations

Authors

Contributions

SL and ZP performed the literature review, the whole experiment and data analysis; Dr. ND and Dr. HL supervised and revised the manuscript. All authors technically checked and finalized the manuscript.

Corresponding author

Correspondence to Hong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing interests to influence the work reported in this paper.

Ethical approval

Not applicable.

Availability of data and materials

All the data have been obtained from our laboratory experiment and analysis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Pang, Z., Ding, N. et al. Enhanced photocatalytic degradation of antibiotic levofloxacin by Ag3PO4/C3N4/ZnO nanocomposite. Res Chem Intermed 49, 5517–5539 (2023). https://doi.org/10.1007/s11164-023-05144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05144-x

Keywords

Navigation