Skip to main content

Advertisement

Log in

Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

A Correction to this article was published on 22 December 2023

This article has been updated

Abstract

Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it’s reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Change history

Abbreviations

CRISPR/Cas9:

Clustered Regularly Interspaced Short palindromic repeats and CRISPR-associated protein 9

OA:

Osteoarthritis

RA:

Rheumatoid Arthritis

MSCs:

Mesenchymal Stem Cells

DNA:

Deoxyribonucleic Acid

gRNA:

Guide Ribonucleic Acid

SBP:

Subchondral Bone Plate

SBT:

Subchondral Bone Trabeculae

SBMLs:

Subchondral Bone Marrow Lesions

SASP:

Senescence-Associated Secretory Phenotype

MMPs:

Matrix metalloproteinases

ECM:

Extracellular Matrix

ACAN:

Aggrecan

TNF:

Tumor Necrosis Factor

TNFα:

Tumor Necrosis Factor alpha

ADAMTS:

A Disintegrin and Metalloproteinase with Thrombospondin motifs

IL:

Interleukin

Th2:

T helper cell type 2

CD4+:

Cluster of differentiation 4

sIL-4R:

Soluble interleukin-4 receptor

sIL-6R:

Soluble interleukin-6 receptor

mIL-6R:

Membrane-bound IL-6 receptor

FLS:

Fibroblast-like Synoviocytes

ADAM17/TACE:

A Disintegrin and Metalloprotease 17/Tumor Necrosis Factor-Alpha Converting Enzyme

CD130/gp130:

Glycoprotein 130

sgp130:

Soluble glycoprotein 130

mgp130:

Membrane glycoprotein 130

SMAD:

Small Mothers Against Decapentaplegic

ERK1/2MAP:

Extracellular Signal-regulated Kinase 1/2 Mitogen-activated Protein

BMP:

Bone Morphogenetic Proteins

TGF-β:

Transforming Growth Factor Beta

NKX3-2:

NK3 homeobox 2

PDGF:

Platelet-derived Growth Factor

VSMCs:

Vascular Smooth Muscle Cells

FGF:

Fibroblast Growth Factors

CDMP-1:

Cartilage-Derived Morphogenetic Protein

ROS:

Reactive Oxygen Species

OH −:

Hydroxyl Radical

H2O2 −:

Hydrogen Peroxide

O2 −:

Superoxide Anion

NO −:

Nitric Oxide

OCl −:

Hypochlorite Ion

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate

LPO:

Lipid-based Peroxidation

LOOH:

Lipid Hydroperoxides

ox-LDL:

Oxidized Low-Density Lipoprotein

NOS:

Nitrous Oxide Synthase

PI3K/Akt:

Phosphatidylinositol 3-Kinase / Protein Kinase B

MEK/ERK:

Mitogen-activated Protein Kinase / Extracellular Signal-regulated Kinase

iNOS:

Inducible Nitric Oxide Synthase

NF-κB:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

PGE2:

Prostaglandin E2

ICE:

Interleukin-1beta Converting Enzyme

NSAIDs:

Non-Steroidal Anti-Inflammatory Drugs

HA:

Hyaluronic Acid / Hyaluronate

PRP:

Platelet-Rich Plasma

BMAC:

Bone Marrow Aspirate Concentrate

AD-MSCs:

Adipose-Derived Mesenchymal Stem Cells

VEGF:

Vascular Endothelial Growth Factor

VAS:

Visual Analogue Scale

WOMAC:

The Western Ontario and McMaster Universities Arthritis Index

SpCas-9:

Streptococcus pyogenes Cas9 nuclease

PAM:

Protospacer Adjacent Motif

RuvC:

Recombination UV C resolvase

HNH:

Homing endonuclease

REC:

Recognition lobe

NUC:

Nuclease lobe

crRNA:

Crispr RNA

sncRNA:

Small non-coding RNA

tracrRNA:

Trans-activating Crispr RNA

DSBs:

Double-Stranded Breaks

HDR:

Homology-Directed Repair

NHEJ:

Non-homologous End Joining

AAV:

Adeno-associated virus

rAAV:

Recombinant Adeno-associated virus

scAAV:

Self-complementary recombinant Adeno-associated virus

cDNA:

Complementary DNA

+ ssRNA:

Positive-sense single RNA

TILs:

Tumor Infiltrating Lymphocytes

HSP70:

Heat Shock Protein 70

CHS:

Chondroitin Sulfate

ELMO1:

Engulfment and Cell Motility 1

SOX9:

SRY-Box Transcription Factor 9

USP11:

Ubiquitin Specific Peptidase 11

WNT 16:

Int/Wingless Protein

BGLAP:

Bone Gamma-Carboxyglutamate Protein

miR-140:

Micro RNA 140

NcRNA:

Non-coding RNA

HAS2:

Hyaluronan Synthase 2

STNFR1α:

Soluble Tumor Necrosis Factor Receptor 1

IL-1RA:

Interleukin 1 Beta Receptor Antagonist

PRG4:

Proteoglycan 4

DANCR:

Differentiation Antagonizing Non-Protein Coding RNA

TRPV4:

Transient Receptor Potential Cation Channel Subfamily V Member 4

CX43:

Connexin 43

COL2A1:

Collagen, Type II, Alpha 1

NGF:

Nerve Growth Factor

CBX4:

Chromobox 4

FOXD1:

Forkhead Box D1

YAP:

Yes-associated Protein 1

iPSCs:

Induced Pluripotent Stem Cells

RCS:

Rat Chondrosarcoma Cell Line

ASC:

Adipose Stromal Cells

FDA:

The Food and Drug Administration

CRISPRi:

CRISPR interference

HDAd:

Helper-Dependent Adenoviral Vectors

DGCR8:

DiGeorge critical region-8

References

  1. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol. 2018;30(2):160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Loeser RF, et al. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kraus VB, et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr Cartil. 2015;23(8):1233–41.

    Article  CAS  Google Scholar 

  4. Glyn-Jones S, et al. Osteoarthritis. Lancet. 2015;386(9991):376–87.

    Article  CAS  PubMed  Google Scholar 

  5. Barnett R. Osteoarthritis. Lancet. 2018;391(10134):1985.

    Article  PubMed  Google Scholar 

  6. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34.

    Article  CAS  PubMed  Google Scholar 

  7. Grassel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020;9.

  8. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil. 2013;21(9):1145–53.

    Article  CAS  Google Scholar 

  9. Bartley EJ, Palit S, Staud R. Predictors of osteoarthritis pain: The importance of resilience. Curr Rheumatol Rep. 2017;19(9):57.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: current state and future implications. Clin Exp Rheumatol. 2019;37(Suppl 120):64–72.

    PubMed  PubMed Central  Google Scholar 

  11. Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018;40:59–66.

    Article  CAS  PubMed  Google Scholar 

  12. Diekman BO, Guilak F. Stem cell-based therapies for osteoarthritis: Challenges and opportunities. Curr Opin Rheumatol. 2013;25(1):119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fitzgerald J. Applications of CRISPR for musculoskeletal research. Bone Joint Res. 2020;9(7):351–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deshpande K, et al. Clustered regularly interspaced short palindromic repeats/Cas9 genetic engineering: Robotic genetic surgery. Am J Robot Surg. 2015;2(1):49–52.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  15. Fan D, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Sci Rep. 2015;5:12217.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Kleinstiver BP, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Tanikella AS, et al. Emerging gene-editing modalities for osteoarthritis. Int J Mol Sci. 2020;21(17).

  18. Zhao L, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann Rheum Dis. 2019;78(5):676–82.

    Article  CAS  PubMed  Google Scholar 

  19. Karimian A, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019;234(8):12267–77.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  20. Stewart HL, Kawcak CE. The importance of subchondral bone in the pathophysiology of osteoarthritis. Front Vet Sci. 2018;5:178.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jang S, Lee K, Ju JH. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int J Mol Sci. 2021;22(5).

  22. Kulkarni P, et al. Pathophysiological landscape of osteoarthritis. Adv Clin Chem. 2021;100:37–90.

    Article  CAS  PubMed  Google Scholar 

  23. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745–59.

    Article  CAS  PubMed  Google Scholar 

  24. Juma SN, et al. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis. 2023.

  25. Walker WT, Kawcak CE, Hill AE. Medial femoral condyle morphometrics and subchondral bone density patterns in Thoroughbred racehorses. Am J Vet Res. 2013;74(5):691–9.

    Article  PubMed  Google Scholar 

  26. Holmdahl DE, Ingelmark BE. The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthop Scand. 1950;20(2):156–65.

    Article  CAS  PubMed  Google Scholar 

  27. Hu Y, et al. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021;9(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu X, et al. Subchondral bone remodeling: A therapeutic target for osteoarthritis. Front Cell Dev Biol. 2020;8:607764.

    Article  PubMed  Google Scholar 

  29. Castañeda S, et al. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012;83(3):315–23.

    Article  PubMed  Google Scholar 

  30. Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12(11):632–44.

    Article  PubMed  Google Scholar 

  31. Fan X, et al. Macro, micro, and molecular. Changes of the osteochondral interface in osteoarthritis development. Front Cell Dev Biol. 2021;9:659654.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan J, et al. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27(10):1347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lyons TJ, et al. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord. 2006;7:52.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–33.

    Article  PubMed  Google Scholar 

  35. Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev. 2019;4(6):221–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Perry TA, et al. Association between Bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis. Osteoarthr Cartil. 2020;28(3):316–23.

    Article  CAS  Google Scholar 

  37. Fusco M, et al. Degenerative joint diseases and neuroinflammation. Pain Pract. 2017;17(4):522–32.

    Article  PubMed  Google Scholar 

  38. Raynauld JP, et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann Rheum Dis. 2008;67(5):683–8.

    Article  PubMed  Google Scholar 

  39. Chen L, et al. Horizontal fissuring at the osteochondral interface: A novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis. 2020;79(6):811–8.

    Article  PubMed  Google Scholar 

  40. Coaccioli S et al. Osteoarthritis: New insight on its pathophysiology. J Clin Med. 2022;11(20).

  41. Creamer P, Hunt M, Dieppe P. Pain mechanisms in osteoarthritis of the knee: Effect of intraarticular anesthetic. J Rheumatol. 1996;23(6):1031–6.

    CAS  PubMed  Google Scholar 

  42. Crawford RW, et al. Diagnostic value of intra-articular anaesthetic in primary osteoarthritis of the hip. J Bone Joint Surg Br. 1998;80(2):279–81.

    Article  CAS  PubMed  Google Scholar 

  43. Kosek E, Ordeberg G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain. 2000;88(1):69–78.

    Article  PubMed  Google Scholar 

  44. Buffington AL, Hanlon CA, McKeown MJ. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain. 2005;113(1–2):172–84.

    Article  PubMed  Google Scholar 

  45. Suri S, et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis. 2007;66(11):1423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ashraf S, et al. Increased vascular penetration and nerve growth in the meniscus: A potential source of pain in osteoarthritis. Ann Rheum Dis. 2011;70(3):523–9.

    Article  PubMed  Google Scholar 

  47. Mapp PI, et al. Angiogenesis in two animal models of osteoarthritis. Osteoarthr Cartil. 2008;16(1):61–9.

    Article  CAS  Google Scholar 

  48. Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40:307–25.

    Article  CAS  PubMed  Google Scholar 

  49. Barker PA, et al. Nerve growth factor signaling and its contribution to pain. J Pain Res. 2020;13:1223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crowley C, et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell. 1994;76(6):1001–11.

    Article  CAS  PubMed  Google Scholar 

  51. Drissi I, Woods WA, Woods CG. Understanding the genetic basis of congenital insensitivity to pain. Br Med Bull. 2020;133(1):65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthr Cartil. 2020;28(5):562–71.

    Article  CAS  Google Scholar 

  53. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3).

  54. Miller RE, et al. Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4. Arthritis Rheumatol. 2015;67(11):2933–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raoof R, Willemen H, Eijkelkamp N. Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford). 2018;57(3):429–40.

    Article  CAS  PubMed  Google Scholar 

  56. Miller RJ, et al. Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol. 2009;194:417–49.

    Article  CAS  Google Scholar 

  57. Vincent TL. Peripheral pain mechanisms in osteoarthritis. Pain. 2020;161(Suppl 1):S138–46.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aizah N, Chong PP, Kamarul T. Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of osteoarthritis. Cartilage. 2021;13(2_suppl):1322S-1333S.

    Article  CAS  PubMed  Google Scholar 

  59. Palmer AJ, et al. Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J. 2013;95-b(6):738–46.

    Article  CAS  PubMed  Google Scholar 

  60. Findlay DM, Atkins GJ. Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep. 2014;12(1):127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Finnilä MAJ, et al. Mineral crystal thickness in calcified cartilage and subchondral bone in healthy and osteoarthritic human knees. J Bone Miner Res. 2022;37(9):1700–10.

    Article  PubMed  Google Scholar 

  62. Prasadam I, et al. Mixed cell therapy of bone marrow-derived mesenchymal stem cells and articular cartilage chondrocytes ameliorates osteoarthritis development. Lab Invest. 2018;98(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  63. Salucci S, Falcieri E, Battistelli M. Chondrocyte death involvement in osteoarthritis. Cell Tissue Res. 2022;389(2):159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Loeser RF. Aging processes and the development of osteoarthritis. Curr Opin Rheumatol. 2013;25(1):108–13.

    Article  PubMed  PubMed Central  Google Scholar 

  65. van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr Cartil. 2012;20(3):223–32.

    Article  Google Scholar 

  66. Lv Z, et al. The function and behavior of chondrogenic progenitor cells in osteoarthritis. Ann J. 2020;5

  67. Fukui N, et al. Zonal gene expression of chondrocytes in osteoarthritic cartilage. Arthritis Rheum. 2008;58(12):3843–53.

    Article  CAS  PubMed  Google Scholar 

  68. Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 2002;3(5):257–64.

    Article  CAS  PubMed  Google Scholar 

  69. Mobasheri A, et al. Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas. 2015;80(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  70. Fukui N, et al. Regional differences in chondrocyte metabolism in osteoarthritis: A detailed analysis by laser capture microdissection. Arthritis Rheum. 2008;58(1):154–63.

    Article  CAS  PubMed  Google Scholar 

  71. Kazemi M, Williams JL. Properties of cartilage-subchondral bone junctions: A narrative review with specific focus on the growth plate. Cartilage. 2021;13(2_suppl):16s–33s.

    Article  PubMed  Google Scholar 

  72. Grässel S, Muschter D. Peripheral nerve fibers and their neurotransmitters in osteoarthritis pathology. Int J Mol Sci. 2017;18(5).

  73. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8(7):390–8.

    Article  CAS  PubMed  Google Scholar 

  74. Hashimoto S, et al. Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2002;10(3):180–7.

    Article  CAS  Google Scholar 

  75. Gelse K, et al. Osteophyte development–molecular characterization of differentiation stages. Osteoarthr Cartil. 2003;11(2):141–8.

    Article  CAS  Google Scholar 

  76. Wong SH, Chiu KY, Yan CH. Review article: Osteophytes. J Orthop Surg (Hong Kong). 2016;24(3):403–10.

    Article  PubMed  Google Scholar 

  77. Barr AJ, et al. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Res Ther. 2015;17(1):228.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  78. Olsson SE, Marshall JL, Story E. Osteophytosis of the knee joint in the dog. A sign of instability. Acta Radiol Suppl. 1972;319:165–7.

    CAS  PubMed  Google Scholar 

  79. Zahan OM, et al. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020;93(1):12–22.

    PubMed  PubMed Central  Google Scholar 

  80. Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone. 2016;85:81–90.

    Article  CAS  PubMed  Google Scholar 

  81. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lu P, et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12).

  83. Roughley PJ, Mort JS. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop. 2014;1(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fell HB, et al. The capacity of pig articular cartilage in organ culture to regenerate after breakdown induced by complement-sufficient antiserum to pig erythrocytes. Calcif Tissue Res. 1976;20(1):3–21.

    Article  CAS  PubMed  Google Scholar 

  85. Pratta MA, et al. Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem. 2003;278(46):45539–45.

    Article  CAS  PubMed  Google Scholar 

  86. Karsdal MA, et al. Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res Ther. 2008;10(3):R63.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fan M, et al. Impacts of aging on murine cartilage biomechanics and chondrocyte in situ calcium signaling. J Biomech. 2022;144:111336.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta. 2012;1824(1):133–45.

    Article  CAS  PubMed  Google Scholar 

  89. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000;43(9):1916–26.

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell PG, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97(3):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Staebler S, et al. MIA/CD-RAP regulates MMP13 and is a potential new disease-modifying target for osteoarthritis therapy. Cells. 2023;12(2).

  92. Hu Q, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci. 2021;22(4).

  93. Little CB, et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009;60(12):3723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayami T, Kapila YL, Kapila S. MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate markers of osteoblastic differentiation in osteogenic cells. Matrix Biol. 2008;27(8):682–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bay-Jensen AC, et al. Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage. Osteoarthr Cartil. 2008;16(5):615–23.

    Article  Google Scholar 

  96. Rousseau JC, Chapurlat R, Garnero P. Soluble biological markers in osteoarthritis. Ther Adv Musculoskelet Dis. 2021;13:1759720X211040300.

  97. Duclos ME, et al. Significance of the serum CTX-II level in an osteoarthritis animal model: A 5-month longitudinal study. Osteoarthr Cartil. 2010;18(11):1467–76.

    Article  CAS  Google Scholar 

  98. De Ceuninck F, Sabatini M, Pastoureau P. Recent progress toward biomarker identification in osteoarthritis. Drug Discov Today. 2011;16(9–10):443–9.

    Article  PubMed  Google Scholar 

  99. Sharif M, et al. A 5-yr longitudinal study of type IIA collagen synthesis and total type II collagen degradation in patients with knee osteoarthritis–association with disease progression. Rheumatology (Oxford). 2007;46(6):938–43.

    Article  CAS  PubMed  Google Scholar 

  100. Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018;81:241–330.

    Article  CAS  PubMed  Google Scholar 

  101. Cabral-Pacheco GA, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24).

  102. Wan J, et al. Matrix metalloproteinase 3: A promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front Physiol. 2021;12:663978.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mahmoud RK, et al. Matrix metalloproteinases MMP-3 and MMP-1 levels in sera and synovial fluids in patients with rheumatoid arthritis and osteoarthritis. Ital J Biochem. 2005;54(3–4):248–57.

    CAS  PubMed  Google Scholar 

  104. Sun S, et al. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet Disord. 2014;15:93.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bau B, et al. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum. 2002;46(10):2648–57.

    Article  CAS  PubMed  Google Scholar 

  106. Kerkelä E, et al. Differential patterns of stromelysin-2 (MMP-10) and MT1-MMP (MMP-14) expression in epithelial skin cancers. Br J Cancer. 2001;84(5):659–69.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Valdés-Fernández J, et al. Molecular and cellular mechanisms of delayed fracture healing in Mmp10 (Stromelysin 2) knockout mice. J Bone Miner Res. 2021;36(11):2203–13.

    Article  PubMed  Google Scholar 

  108. Bondeson J, et al. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. 2006;8(6):R187.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee H, et al. Therapeutic single compounds for osteoarthritis treatment. Pharmaceuticals (Basel). 2021;14(2).

  110. Ding L, Guo D, Homandberg GA. The cartilage chondrolytic mechanism of fibronectin fragments involves MAP kinases: comparison of three fragments and native fibronectin. Osteoarthr Cartil. 2008;16(10):1253–62.

    Article  CAS  Google Scholar 

  111. Hwang HS, et al. Fibronectin fragment-induced expression of matrix metalloproteinases is mediated by MyD88-dependent TLR-2 signaling pathway in human chondrocytes. Arthritis Res Ther. 2015;17:320.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dunn SL, et al. Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthr Cartil. 2016;24(8):1431–40.

    Article  CAS  Google Scholar 

  113. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. 2013;2013:284873.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Perez-Garcia S, et al. Profile of matrix-remodeling proteinases in osteoarthritis: impact of fibronectin. Cells. 2019;9(1).

  115. Ding L, et al. A single blunt impact on cartilage promotes fibronectin fragmentation and upregulates cartilage degrading stromelysin-1/matrix metalloproteinase-3 in a bovine ex vivo model. J Orthop Res. 2014;32(6):811–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J Cell Biochem. 2011;112(12):3507–14.

    Article  CAS  PubMed  Google Scholar 

  117. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther. 2003;5(2):94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fontanil T, et al. Hyalectanase activities by the ADAMTS metalloproteases. Int J Mol Sci. 2021;22(6).

  119. Song RH, et al. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 2007;56(2):575–85.

    Article  CAS  PubMed  Google Scholar 

  120. Scavenius C, et al. Matrix-degrading protease ADAMTS-5 cleaves inter-α-inhibitor and releases active heavy chain 2 in synovial fluids from arthritic patients. J Biol Chem. 2019;294(42):15495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2015;23(11):1825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Punzi L, et al. Post-traumatic arthritis: Overview on pathogenic mechanisms and role of inflammation. RMD Open. 2016;2(2):e000279.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bondeson J, et al. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol. 2008;26(1):139–45.

    MathSciNet  CAS  PubMed  Google Scholar 

  124. Apte SS. Anti-ADAMTS5 monoclonal antibodies: Implications for aggrecanase inhibition in osteoarthritis. Biochem J. 2016;473(1):e1-4.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  125. Jiang L, et al. ADAMTS5 in osteoarthritis: Biological functions, regulatory network, and potential targeting therapies. Front Mol Biosci. 2021;8:703110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Glasson SS, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  127. Santamaria S, et al. Development of a monoclonal anti-ADAMTS-5 antibody that specifically blocks the interaction with LRP1. MAbs. 2017;9(4):595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dupuis LE, et al. Adamts5(-/-) mice exhibit altered aggrecan proteolytic profiles that correlate with ascending aortic anomalies. Arterioscler Thromb Vasc Biol. 2019;39(10):2067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 2015;3(4):177–92.

    Article  PubMed  Google Scholar 

  130. Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020;2020:8293921.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hoff P, et al. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int Orthop. 2013;37(1):145–51.

    Article  PubMed  Google Scholar 

  132. Kapoor M, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  133. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep. 2013;15(11):375.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dinarello CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25(6):389–93.

    Article  CAS  PubMed  Google Scholar 

  136. Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal. 2019;53:212–23.

    Article  CAS  PubMed  Google Scholar 

  137. Westacott CI, et al. Tumor necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis. Osteoarthr Cartil. 2000;8(3):213–21.

    Article  CAS  Google Scholar 

  138. Ng EK, et al. Human intestinal epithelial and smooth muscle cells are potent producers of IL-6. Mediators Inflamm. 2003;12(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Guerne PA, Carson DA, Lotz M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J Immunol. 1990;144(2):499–505.

    Article  CAS  PubMed  Google Scholar 

  140. Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xue J, et al. Tumor necrosis factor-α induces ADAMTS-4 expression in human osteoarthritis chondrocytes. Mol Med Rep. 2013;8(6):1755–60.

    Article  CAS  PubMed  Google Scholar 

  142. López-Armada MJ, et al. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthr Cartil. 2006;14(10):1011–22.

    Article  Google Scholar 

  143. Wang ZW, et al. Elevated levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and vascular endothelial growth factor in patients with knee articular cartilage injury. World J Clin Cases. 2019;7(11):1262–9.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  144. Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: The cytokine connection. Cytokine. 2014;70(2):185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Westacott CI, et al. Tumor necrosis factor-alpha receptor expression on chondrocytes isolated from human articular cartilage. J Rheumatol. 1994;21(9):1710–5.

    CAS  PubMed  Google Scholar 

  146. Cope AP, et al. Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. Arthritis Rheum. 1992;35(10):1160–9.

    Article  CAS  PubMed  Google Scholar 

  147. Chen C, et al. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes. Acta Biochim Biophys Sin (Shanghai). 2015;47(2):121–9.

    Article  MathSciNet  PubMed  Google Scholar 

  148. Liao CR, et al. Advanced oxidation protein products increase TNF-α and IL-1β expression in chondrocytes via NADPH oxidase 4 and accelerate cartilage degeneration in osteoarthritis progression. Redox Biol. 2020;28:101306.

    Article  CAS  PubMed  Google Scholar 

  149. Pfander D, et al. Tenascin and aggrecan expression by articular chondrocytes is influenced by interleukin 1beta: A possible explanation for the changes in matrix synthesis during osteoarthritis. Ann Rheum Dis. 2004;63(3):240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Steenvoorden MM, et al. Fibroblast-like synoviocyte-chondrocyte interaction in cartilage degradation. Clin Exp Rheumatol. 2007;25(2):239–45.

    CAS  PubMed  Google Scholar 

  151. Oo WM, et al. Disease-modifying drugs in osteoarthritis: Current understanding and future therapeutics. Expert Opin Emerg Drugs. 2018;23(4):331–47.

    Article  CAS  PubMed  Google Scholar 

  152. Fortier LA, et al. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Civinini R, et al. Growth factors in the treatment of early osteoarthritis. Clin Cases Miner Bone Metab. 2013;10(1):26–9.

    PubMed  PubMed Central  Google Scholar 

  154. Zhao Y, et al. PDGF-induced vascular smooth muscle cell proliferation is associated with dysregulation of insulin receptor substrates. Am J Physiol Cell Physiol. 2011;300(6):C1375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel). 2010;3(3):572–99.

    Article  CAS  PubMed  Google Scholar 

  156. Bennett NT, Schultz GS. Growth factors and wound healing: Biochemical properties of growth factors and their receptors. Am J Surg. 1993;165(6):728–37.

    Article  CAS  PubMed  Google Scholar 

  157. Tan EM, et al. Platelet-derived growth factors-AA and -BB regulate collagen and collagenase gene expression differentially in human fibroblasts. Biochem J. 1995;310(Pt 2):585–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1–2):1–57.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil. 2006;14(5):403–12.

    Article  CAS  Google Scholar 

  160. Kieswetter K, et al. Platelet derived growth factor stimulates chondrocyte proliferation but prevents endochondral maturation. Endocrine. 1997;6(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  161. Ellman MB, et al. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene. 2008;420(1):82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ellman MB, et al. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem. 2013;114(4):735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu MY, Hill CS. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009;16(3):329–43.

    Article  CAS  PubMed  Google Scholar 

  164. Luyten FP. Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol. 1997;29(11):1241–4.

    Article  CAS  PubMed  Google Scholar 

  165. Bai X, et al. Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochem Biophys Res Commun. 2004;325(2):453–60.

    Article  CAS  PubMed  Google Scholar 

  166. Fan J, et al. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomater. 2010;6(3):1178–85.

    Article  CAS  PubMed  Google Scholar 

  167. Smith P, et al. Genetic enhancement of matrix synthesis by articular chondrocytes: Comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum. 2000;43(5):1156–64.

    Article  CAS  PubMed  Google Scholar 

  168. Diao H, et al. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds. Tissue Eng Part A. 2009;15(9):2687–98.

    Article  CAS  PubMed  Google Scholar 

  169. Junttila IS. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol. 2018;9:888.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Fernández-Moreno M, et al. Genetics in osteoarthritis. Curr Genomics. 2008;9(8):542–7.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Stefik D, et al. An insight into osteoarthritis susceptibility: Integration of immunological and genetic background. Bosn J Basic Med Sci. 2021;21(2):155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Molnar V, et al. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. 2021;22(17).

  173. Silvestri T, et al. Elevated serum levels of soluble interleukin-4 receptor in osteoarthritis. Osteoarthr Cartil. 2006;14(7):717–9.

    Article  CAS  Google Scholar 

  174. Doi H, et al. Interleukin-4 downregulates the cyclic tensile stress-induced matrix metalloproteinases-13 and cathepsin B expression by rat normal chondrocytes. Acta Med Okayama. 2008;62(2):119–26.

    CAS  PubMed  ADS  Google Scholar 

  175. Yeh LA, et al. Interleukin-4, an inhibitor of cartilage breakdown in bovine articular cartilage explants. J Rheumatol. 1995;22(9):1740–6.

    CAS  PubMed  Google Scholar 

  176. Brown MA, Hural J. Functions of IL-4 and control of its expression. Crit Rev Immunol. 2017;37(2–6):181–212.

    Article  CAS  PubMed  Google Scholar 

  177. Guicheux J, et al. Primary human articular chondrocytes, dedifferentiated chondrocytes, and synoviocytes exhibit differential responsiveness to interleukin-4: Correlation with the expression pattern of the common receptor gamma chain. J Cell Physiol. 2002;192(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  178. Pal M, Febbraio MA, Whitham M. From cytokine to myokine: The emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol. 2014;92(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  179. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Liu S, et al. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep. 2022;25(3).

  181. Rose-John S, et al. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets. 2007;11(5):613–24.

    Article  CAS  PubMed  Google Scholar 

  182. Schumacher N, Rose-John S. ADAM17 activity and IL-6 trans-signaling in inflammation and cancer. Cancers (Basel). 2019;11(11).

  183. Jostock T, et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem. 2001;268(1):160–7.

    Article  CAS  PubMed  Google Scholar 

  184. Narazaki M, et al. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood. 1993;82(4):1120–6.

    Article  CAS  PubMed  Google Scholar 

  185. Akeson G, Malemud CJ. A role for soluble IL-6 receptor in osteoarthritis. J Funct Morphol Kinesiol. 2017;2(3).

  186. Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford). 2020;59(10):2681–94.

    Article  CAS  PubMed  Google Scholar 

  187. Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol (Lausanne). 2018;9:788.

    Article  PubMed  Google Scholar 

  188. de Hooge AS, et al. Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthr Cartil. 2005;13(1):66–73.

    Article  Google Scholar 

  189. van de Loo FA, et al. Interleukin-6 reduces cartilage destruction during experimental arthritis. A study in interleukin-6-deficient mice. Am J Pathol. 1997;151(1):177–91.

    PubMed  PubMed Central  Google Scholar 

  190. Mostafa Mtairag E, et al. Effects of interleukin-10 on monocyte/endothelial cell adhesion and MMP-9/TIMP-1 secretion. Cardiovasc Res. 2001;49(4):882–90.

    Article  CAS  PubMed  Google Scholar 

  191. Schulze-Tanzil G, et al. Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders. Curr Gene Ther. 2009;9(4):306–15.

    Article  CAS  PubMed  Google Scholar 

  192. Wang YS, et al. Osteogenic potential of human calcitonin gene-related peptide alpha gene-modified bone marrow mesenchymal stem cells. Chin Med J (Engl). 2011;124(23):3976–81.

    CAS  PubMed  Google Scholar 

  193. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rai MF, et al. A microarray study of articular cartilage in relation to obesity and severity of knee osteoarthritis. Cartilage. 2020;11(4):458–72.

    Article  CAS  PubMed  Google Scholar 

  195. Greenhill CJ, et al. Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Res Ther. 2014;16(4):419.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Jansen NW, et al. Interleukin-10 protects against blood-induced joint damage. Br J Haematol. 2008;142(6):953–61.

    Article  CAS  PubMed  Google Scholar 

  197. Wang Y, Lou S. Direct protective effect of interleukin-10 on articular chondrocytes in vitro. Chin Med J (Engl). 2001;114(7):723–5.

    CAS  PubMed  Google Scholar 

  198. Umulis D, O’Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development. 2009;136(22):3715–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zeng L, et al. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 2002;16(15):1990–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Akiyama H, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Alaaeddine N, et al. Inhibition of tumor necrosis factor alpha-induced prostaglandin E2 production by the antiinflammatory cytokines interleukin-4, interleukin-10, and interleukin-13 in osteoarthritic synovial fibroblasts: Distinct targeting in the signaling pathways. Arthritis Rheum. 1999;42(4):710–8.

    Article  CAS  PubMed  Google Scholar 

  202. Hart PH, et al. Comparison of the suppressive effects of interleukin-10 and interleukin-4 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Immunology. 1995;84(4):536–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci. 2006;27(12):639–45.

    Article  CAS  PubMed  Google Scholar 

  204. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rahmati M, et al. Aging and osteoarthritis: central role of the extracellular matrix. Ageing Res Rev. 2017;40:20–30.

    Article  CAS  PubMed  Google Scholar 

  206. Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil. 2003;11(10):747–55.

    Article  CAS  Google Scholar 

  207. Altay MA, et al. Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol Int. 2015;35(10):1725–31.

    Article  CAS  PubMed  Google Scholar 

  208. Ertürk C, et al. Paraoxonase-1 activity and oxidative status in patients with knee osteoarthritis and their relationship with radiological and clinical parameters. Scand J Clin Lab Invest. 2012;72(5):433–9.

    Article  PubMed  Google Scholar 

  209. Stamler JS, Lamas S, Fang FC. Nitrosylation: The prototypic redox-based signaling mechanism. Cell. 2001;106(6):675–83.

    Article  CAS  PubMed  Google Scholar 

  210. Carlo MD Jr, Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: Correlation with intracellular glutathione levels. Arthritis Rheum. 2003;48(12):3419–30.

    Article  PubMed  Google Scholar 

  211. Regan EA, Bowler RP, Crapo JD. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr Cartil. 2008;16(4):515–21.

    Article  CAS  Google Scholar 

  212. Soran N, et al. Assessment of paraoxonase activities in patients with knee osteoarthritis. Redox Rep. 2008;13(5):194–8.

    Article  CAS  PubMed  Google Scholar 

  213. van Lent PL, et al. NADPH-oxidase-driven oxygen radical production determines chondrocyte death and partly regulates metalloproteinase-mediated cartilage matrix degradation during interferon-gamma-stimulated immune complex arthritis. Arthritis Res Ther. 2005;7(4):R885–95.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Notoya K, et al. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol. 2000;165(6):3402–10.

    Article  CAS  PubMed  Google Scholar 

  215. Rosa SC, et al. Nitric oxide synthase isoforms and NF-kappaB activity in normal and osteoarthritic human chondrocytes: Regulation by inducible nitric oxide. Nitric Oxide. 2008;19(3):276–83.

    Article  CAS  PubMed  Google Scholar 

  216. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12(9):440–50.

    Article  CAS  PubMed  Google Scholar 

  217. Frenkel SR, et al. Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly. Arthritis Rheum. 1996;39(11):1905–12.

    Article  CAS  PubMed  Google Scholar 

  218. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576–91.

    Article  CAS  PubMed  Google Scholar 

  219. Drevet S, et al. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp Gerontol. 2018;111:107–17.

    Article  CAS  PubMed  Google Scholar 

  220. Liu L, et al. The role of oxidative stress in the development of knee osteoarthritis: A comprehensive research review. Front Mol Biosci. 2022;9:1001212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ahmad N, Ansari MY, Haqqi TM. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol. 2020;235(10):6366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Balaganur V, et al. Effect of S-methylisothiourea, an inducible nitric oxide synthase inhibitor, in joint pain and pathology in surgically induced model of osteoarthritis. Connect Tissue Res. 2014;55(5–6):367–77.

    Article  CAS  PubMed  Google Scholar 

  223. Suantawee T, et al. Upregulation of inducible nitric oxide synthase and nitrotyrosine expression in primary knee osteoarthritis. J Med Assoc Thai. 2015;98(Suppl 1):S91–7.

    PubMed  Google Scholar 

  224. Watt FE, Gulati M. New drug treatments for osteoarthritis: What is on the horizon? Eur Med J Rheumatol. 2017;2(1):50–8.

    PubMed  PubMed Central  Google Scholar 

  225. Chen L, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.

    Article  MathSciNet  PubMed  Google Scholar 

  226. Pelletier JP, et al. The increased synthesis of inducible nitric oxide inhibits IL-1ra synthesis by human articular chondrocytes: Possible role in osteoarthritic cartilage degradation. Osteoarthr Cartil. 1996;4(1):77–84.

    Article  CAS  Google Scholar 

  227. Boileau C, et al. The in situ up-regulation of chondrocyte interleukin-1-converting enzyme and interleukin-18 levels in experimental osteoarthritis is mediated by nitric oxide. Arthritis Rheum. 2002;46(10):2637–47.

    Article  CAS  PubMed  Google Scholar 

  228. Henrotin YE, et al. Nitric oxide downregulates interleukin 1beta (IL-1beta) stimulated IL-6, IL-8, and prostaglandin E2 production by human chondrocytes. J Rheumatol. 1998;25(8):1595–601.

    CAS  PubMed  Google Scholar 

  229. Ginn-Pease ME, Whisler RL. Redox signals and NF-kappaB activation in T cells. Free Radic Biol Med. 1998;25(3):346–61.

    Article  CAS  PubMed  Google Scholar 

  230. Lewis R, et al. Strategies for optimising musculoskeletal health in the 21(st) century. BMC Musculoskelet Disord. 2019;20(1):164.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Qin J, et al. Lifetime risk of symptomatic hand osteoarthritis: The Johnston County Osteoarthritis Project. Arthritis Rheumatol. 2017;69(6):1204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  232. DeJulius CR, et al. Recent advances in clinical translation of intra-articular osteoarthritis drug delivery systems. Adv Ther (Weinh). 2021;4(1).

  233. Shuborna NS, et al. Generation of novel hyaluronic acid biomaterials for study of pain in third molar intervention: A review. J Dent Anesth Pain Med. 2019;19(1):11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Browne JA, et al. Stem cells and platelet-rich plasma injections for advanced hip and knee arthritis: Enthusiasm outpaces science. J Arthroplasty. 2019;34(6):1049–50.

    Article  PubMed  Google Scholar 

  235. Cole BJ, Redondo ML, Cotter EJ. Articular cartilage injuries of the knee: patient health literacy, expectations for management, and clinical outcomes. Cartilage. 2021;12(2):139–45.

    Article  PubMed  Google Scholar 

  236. Delanois RE, et al. Biologic therapies for the treatment of knee osteoarthritis. J Arthroplasty. 2019;34(4):801–13.

    Article  PubMed  Google Scholar 

  237. Southworth TM, et al. The use of platelet-rich plasma in symptomatic knee osteoarthritis. J Knee Surg. 2019;32(1):37–45.

    Article  PubMed  Google Scholar 

  238. Sherman BJ, et al. The role of orthobiologics in the management of osteoarthritis and focal cartilage defects. Orthopedics. 2019;42(2):66–73.

    Article  PubMed  Google Scholar 

  239. van Buul GM, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med. 2011;39(11):2362–70.

    Article  PubMed  Google Scholar 

  240. Dai WL, et al. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: A meta-analysis of randomized controlled trials. Arthroscopy. 2017;33(3):659-670.e1.

    Article  PubMed  Google Scholar 

  241. Glynn LG, et al. Platelet-rich plasma (PRP) therapy for knee arthritis: A feasibility study in primary care. Pilot Feasibility Stud. 2018;4:93.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Johal H, et al. Impact of platelet-rich plasma use on pain in orthopaedic surgery: A systematic review and meta-analysis. Sports Health. 2019;11(4):355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Cotter EJ, et al. Bone marrow aspirate concentrate for cartilage defects of the knee: From bench to bedside evidence. Cartilage. 2018;9(2):161–70.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  244. Saltzman BM, et al. Stem cells in orthopedics: A comprehensive guide for the general orthopedist. Am J Orthop (Belle Mead NJ). 2016;45(5):280–326.

    PubMed  Google Scholar 

  245. Huh SW, et al. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC). J Clin Orthop Trauma. 2016;7(3):153–6.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  246. Chahla J, et al. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: A systematic review of outcomes. Orthop J Sports Med. 2016;4(1):2325967115625481.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Holton J, et al. The basic science of bone marrow aspirate concentrate in chondral injuries. Orthop Rev (Pavia). 2016;8(3):6659.

    PubMed  Google Scholar 

  248. Southworth TM, et al. Orthobiologics for focal articular cartilage defects. Clin Sports Med. 2019;38(1):109–22.

    Article  PubMed  Google Scholar 

  249. Kim JD, et al. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol. 2014;24(8):1505–11.

    Article  PubMed  Google Scholar 

  250. Panchal J, Malanga G, Sheinkop M. Safety and efficacy of percutaneous injection of lipogems micro-fractured adipose tissue for osteoarthritic knees. Am J Orthop (Belle Mead NJ). 2018;47(11).

  251. Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: State of the art and lipogems® technology development. Curr Stem Cell Rep. 2016;2(3):304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Jo CH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  253. Schiavone Panni A, et al. Preliminary results of autologous adipose-derived stem cells in early knee osteoarthritis: Identification of a subpopulation with greater response. Int Orthop. 2019;43(1):7–13.

    Article  PubMed  Google Scholar 

  254. Krawczenko A, Klimczak A. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. Int J Mol Sci. 2022;23(5).

  255. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    Article  PubMed  Google Scholar 

  256. Hille F, Charpentier E. CRISPR-Cas: Biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1707).

  257. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018;200(7).

  258. Rath D, et al. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie. 2015;117:119–28.

    Article  CAS  PubMed  Google Scholar 

  259. Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  260. Makarova KS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015:722–36.

  261. Mohanraju P, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016;353(6299):aad5147.

    Article  PubMed  Google Scholar 

  262. Shmakov S, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017;15(3):169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Charpentier E. CRISPR-Cas9: how research on a bacterial RNA-guided mechanism opened new perspectives in biotechnology and biomedicine. EMBO Mol Med. 2015;7(4):363–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:353–61.

    PubMed  PubMed Central  Google Scholar 

  265. Liu Z, et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact. 2020;19(1):172.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Mei Y, et al. Recent progress in CRISPR/Cas9 technology. J Genet Genomics. 2016;43(2):63–75.

    Article  CAS  PubMed  Google Scholar 

  267. Nishimasu H, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Gasiunas G, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012;109(39):E2579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Faure G, et al. Comparative genomics and evolution of trans-activating RNAs in Class 2 CRISPR-Cas systems. RNA Biol. 2019;16(4):435–48.

    Article  PubMed  Google Scholar 

  270. Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  271. Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quant Biol. 2014;2(2):59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Ceasar SA, et al. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta. 2016;1863(9):2333–44.

    Article  CAS  PubMed  Google Scholar 

  273. Westra ER, et al. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 2013;9(9):e1003742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Shah SA, et al. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biol. 2013;10(5):891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29.

    Article  CAS  PubMed  Google Scholar 

  276. Liu M, et al. Methodologies for improving HDR efficiency. Front Genet. 2018;9:691.

    Article  CAS  PubMed  Google Scholar 

  277. Stinson BM, Loparo JJ. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 2021;90:137–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Yang H, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci. 2020;21(18).

  279. Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res. 2019;52(6):1555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Hui SW. Overview of drug delivery and alternative methods to electroporation. Methods Mol Biol. 2008;423:91–107.

    Article  CAS  PubMed  Google Scholar 

  282. Zavvar M, et al. Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes. J Cell Physiol. 2019;234(10):16913–24.

    Article  CAS  PubMed  Google Scholar 

  283. Naso MF, et al. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Mingozzi F, High KA. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Gruntman AM, Flotte TR. The rapidly evolving state of gene therapy. Faseb J. 2018;32(4):1733–40.

    Article  CAS  PubMed  Google Scholar 

  286. Nixon AJ, et al. Gene therapy in musculoskeletal repair. Ann N Y Acad Sci. 2007;1117:310–27.

    Article  CAS  PubMed  ADS  Google Scholar 

  287. Chen X, Gonçalves MA. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–57.

    Article  CAS  PubMed  Google Scholar 

  288. Yoon DS, et al. Cellular and tissue selectivity of AAV serotypes for gene delivery to chondrocytes and cartilage. Int J Med Sci. 2021;18(15):3353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Watson-Levings RS, et al. Gene therapy in orthopaedics: progress and challenges in pre-clinical development and translation. Front Bioeng Biotechnol. 2022;10:901317.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Kay JD, et al. Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus. J Gene Med. 2009;11(7):605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Rey-Rico A, et al. Effective remodelling of human osteoarthritic cartilage by sox9 gene transfer and overexpression upon delivery of rAAV vectors in polymeric micelles. Mol Pharm. 2018;15(7):2816–26.

    Article  CAS  PubMed  Google Scholar 

  293. Weimer A, et al. Benefits of recombinant adeno-associated virus (rAAV)-mediated insulinlike growth factor I (IGF-I) overexpression for the long-term reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis. Mol Med. 2012;18(1):346–58.

    Article  CAS  PubMed  Google Scholar 

  294. Ueblacker P, et al. In vivo analysis of retroviral gene transfer to chondrocytes within collagen scaffolds for the treatment of osteochondral defects. Biomaterials. 2007;28(30):4480–7.

    Article  CAS  PubMed  Google Scholar 

  295. Morgan MA, et al. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther. 2021;28(9):494–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Rosenberg SA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.

    Article  CAS  PubMed  Google Scholar 

  297. Rosenberg SA, et al. Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323(9):570–8.

    Article  CAS  PubMed  Google Scholar 

  298. Meyerrose TE, et al. Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells. 2008;26(7):1713–22.

    Article  CAS  PubMed  Google Scholar 

  299. Gouze E, et al. In vivo gene delivery to synovium by lentiviral vectors. Mol Ther. 2002;5(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  300. Cesana D, et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther. 2014;22(4):774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Patil S, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019;20(21).

  302. Grossin L, et al. Direct gene transfer into rat articular cartilage by in vivo electroporation. Faseb J. 2003;17(8):829–35.

    Article  CAS  PubMed  Google Scholar 

  303. Ohashi S, et al. Successful genetic transduction in vivo into synovium by means of electroporation. Biochem Biophys Res Commun. 2002;293(5):1530–5.

    Article  CAS  PubMed  Google Scholar 

  304. Grossin L, et al. Gene transfer with HSP 70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis. Faseb J. 2006;20(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  305. Caplen NJ, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med. 1995;1(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  306. Stern M, et al. The effects of jet nebulisation on cationic liposome-mediated gene transfer in vitro. Gene Ther. 1998;5(5):583–93.

    Article  CAS  PubMed  Google Scholar 

  307. Madry H, Trippel SB. Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 2000;7(4):286–91.

    Article  CAS  PubMed  Google Scholar 

  308. Cai Y, et al. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1. Bioact Mater. 2023;19:444–57.

    CAS  PubMed  Google Scholar 

  309. Lu H, et al. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE. 2014;9(1):e84703.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  310. Chen Z, et al. Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy. J Zhejiang Univ Sci B. 2018;19(12):910–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Wu X, et al. Extracellular vesicles: Potential role in osteoarthritis regenerative medicine. J Orthop Translat. 2020;21:73–80.

    Article  CAS  PubMed  Google Scholar 

  312. Gallego-Perez D, et al. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat Nanotechnol. 2017;12(10):974–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  313. Zhou Q, et al. Exosomes in osteoarthritis and cartilage injury: Advanced development and potential therapeutic strategies. Int J Biol Sci. 2020;16(11):1811–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Liu Y, et al. Exosomes derived from human urine-derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model. Am J Sports Med. 2022;50(4):1088–105.

    Article  PubMed  Google Scholar 

  315. Liang Y, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12(11):4866–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Evans CH, Ghivizzani SC, Robbins PD. Gene delivery to joints by intra-articular injection. Hum Gene Ther. 2018;29(1):2–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Goodrich LR, et al. scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther. 2015;22(7):536–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Izal I, et al. IGF-1 gene therapy to protect articular cartilage in a rat model of joint damage. Arch Orthop Trauma Surg. 2008;128(2):239–47.

    Article  PubMed  Google Scholar 

  319. Wu Y, et al. Circular RNA circPDE4D protects against osteoarthritis by binding to miR-103a-3p and regulating FGF18. Mol Ther. 2021;29(1):308–23.

    Article  CAS  PubMed  Google Scholar 

  320. Cherian JJ, et al. Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthr Cartil. 2015;23(12):2109–18.

    Article  CAS  Google Scholar 

  321. Ha CW, et al. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy. 2012;14(2):247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Geng Y, et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. J Bone Miner Metab. 2020;38(3):277–88.

    Article  CAS  PubMed  Google Scholar 

  323. Lee SY, et al. The therapeutic effect of STAT3 signaling-suppressed MSC on pain and articular cartilage damage in a rat model of monosodium iodoacetate-induced osteoarthritis. Front Immunol. 2018;9:2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Nejadnik H, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  325. Li KC, Hu YC. Cartilage tissue engineering: Recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater. 2015;4(7):948–68.

    Article  CAS  PubMed  Google Scholar 

  326. Lee H, et al. TissueGene-C promotes an anti-inflammatory micro-environment in a rat monoiodoacetate model of osteoarthritis via polarization of M2 macrophages leading to pain relief and structural improvement. Inflammopharmacology. 2020;28(5):1237–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Lee B, et al. Results of a phase II study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1. J Knee Surg. 2020;33(2):167–72.

    Article  PubMed  ADS  Google Scholar 

  328. Liu C, et al. Delivering metal ions by nanomaterials: Turning metal ions into drug-like cancer theranostic agents. Coord Chem Rev. 2023;494:215332.

    Article  CAS  ADS  Google Scholar 

  329. Lee MC, et al. A placebo-controlled randomised trial to assess the effect of TGF-ß1-expressing chondrocytes in patients with arthritis of the knee. Bone Joint J. 2015;97-b(7):924–32.

    Article  PubMed  Google Scholar 

  330. Ha CW, et al. A multicenter, single-blind, phase iia clinical trial to evaluate the efficacy and safety of a cell-mediated gene therapy in degenerative knee arthritis patients. Hum Gene Ther Clin Dev. 2015;26(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  331. Adkar SS, et al. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cells. 2019;37(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  332. Attia N, et al. Mesenchymal stem cells as a gene delivery tool: Promise, problems, and prospects. Pharmaceutics. 2021;13(6).

  333. Farhang N, et al. (*) CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng Part A. 2017;23(15–16):738–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Karlsen TA, et al. Generation of IL1β-resistant chondrocytes using CRISPR-CAS genome editing. Osteoarthr Cartil. 2016;24:S325.

    Article  Google Scholar 

  335. Dooley C, Murphy M. Using CRISPR/Cas9 gene editting systems to understand the function of interleukin 16 in progression of osteoarthritis. Osteoarthr Cartil. 2021;29:S2–3.

    Article  Google Scholar 

  336. Dooley C. Investigation of interleukin 16 in osteoarthritis progression through CRISPR/CAS9. Osteoarthr Cartil. 2020;28:S522–3.

    Article  Google Scholar 

  337. Fan Y, et al. CRISPR-Cas9-mediated loss of function of β-catenin attenuates intervertebral disc degeneration. Mol Ther Nucleic Acids. 2022;28:387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Freitas GP, et al. Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Ther. 2021;28(12):748–59.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  339. Arandjelovic S, et al. ELMO1 signaling is a promoter of osteoclast function and bone loss. Nat Commun. 2021;12(1):4974.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  340. Truong VA, et al. CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res. 2019;47(13): e74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Kaushal K, et al. Genome-wide CRISPR/Cas9-based screening for deubiquitinase subfamily identifies ubiquitin-specific protease 11 as a novel regulator of osteogenic differentiation. Int J Mol Sci. 2022;23(2).

  342. McGowan LM, et al. Wnt16 elicits a protective effect against fractures and supports bone repair in zebrafish. JBMR Plus. 2021;5(3):e10461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Lambert LJ, et al. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Model Mech. 2016;9(10):1169–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Chaudhry N, et al. Highly efficient CRISPR-Cas9-mediated editing identifies novel mechanosensitive microRNA-140 targets in primary human articular chondrocytes. Osteoarthr Cartil. 2022;30(4):596–604.

    Article  CAS  Google Scholar 

  345. Huang Y, et al. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention. Matrix Biol. 2016;56:74–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Brunger JM, et al. Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs. Stem Cell Rep. 2017;8(5):1202–13.

    Article  CAS  Google Scholar 

  347. Bloquel C, et al. Gene therapy of collagen-induced arthritis by electrotransfer of human tumor necrosis factor-alpha soluble receptor I variants. Hum Gene Ther. 2004;15(2):189–201.

    Article  CAS  PubMed  Google Scholar 

  348. Khakshooy A, Balenton N, Chiappelli F. Lubricin: A principal modulator of the psychoneuroendocrine - osteoimmune interactome - implications for novel treatments of osteoarthritic pathologies. Bioinformation. 2017;13(10):343–6.

    Article  PubMed  PubMed Central  Google Scholar 

  349. Szychlinska MA, et al. Altered joint tribology in osteoarthritis: Reduced lubricin synthesis due to the inflammatory process. New horizons for therapeutic approaches. Ann Phys Rehabil Med. 2016;59(3):149–56.

    Article  CAS  PubMed  Google Scholar 

  350. Waller KA, et al. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A. 2013;110(15):5852–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  351. Rice SJ, et al. Identification of a novel, methylation-dependent, RUNX2 regulatory region associated with osteoarthritis risk. Hum Mol Genet. 2018;27(19):3464–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Liao L, et al. Deletion of Runx2 in articular chondrocytes decelerates the progression of DMM-induced osteoarthritis in adult mice. Sci Rep. 2017;7(1):2371.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  353. Ye Y, Baek SH, Zhang T. Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1. Cell Biosci. 2018;8:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Nguyen NTK, et al. CRISPR activation of long non-coding RNA DANCR promotes bone regeneration. Biomaterials. 2021;275:120965.

    Article  CAS  PubMed  Google Scholar 

  355. Seidl CI, Fulga TA, Murphy CL. CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation. Osteoarthr Cartil. 2019;27(1):140–7.

    Article  CAS  Google Scholar 

  356. Nonaka K, et al. Novel gain-of-function mutation of TRPV4 associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia. Biochem Biophys Rep. 2019;19:100648.

    PubMed  PubMed Central  Google Scholar 

  357. Varela-Eirin M, et al. Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis. 2018;9(12):1166.

    Article  PubMed  PubMed Central  Google Scholar 

  358. Dicks A, et al. Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res Ther. 2020;11(1):66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Ren X, et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 2019;26(13):3643-3656.e7.

    Article  CAS  PubMed  Google Scholar 

  360. Fu L, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019;17(4):e3000201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Yang M, et al. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone. 2014;69:118–25.

    Article  CAS  PubMed  Google Scholar 

  362. Klein JC, et al. Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nat Commun. 2019;10(1):2434.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  363. Wang W, et al. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-β/SMAD2 signaling. Arthritis Res Ther. 2021;23(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  364. Chapman K, et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5’ UTR of GDF5 with osteoarthritis susceptibility. Hum Mol Genet. 2008;17(10):1497–504.

    Article  CAS  PubMed  Google Scholar 

  365. Egli RJ, et al. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 2009;60(7):2055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Ala-Kokko L, et al. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. Proc Natl Acad Sci U S A. 1990;87(17):6565–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  367. Yang Y, et al. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ. 2018;25(10):1870–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Huynh NP, et al. Long non-coding RNA GRASLND enhances chondrogenesis via suppression of the interferon type II signaling pathway. Elife. 2020;9.

  369. Bonato A, et al. Engineering inflammation-resistant cartilage: bridging gene therapy and tissue engineering. Adv Healthc Mater. 2023;12(17):e2202271.

    Article  PubMed  Google Scholar 

  370. Orth P, et al. Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2119–30.

    Article  PubMed  Google Scholar 

  371. Deng L, et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun. 2019;10(1):3329.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  372. Lu CH, et al. Regenerating cartilages by engineered ASCs: Prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther. 2014;22(1):186–95.

    Article  CAS  PubMed  Google Scholar 

  373. Ko JY, et al. SOX-6, 9-transfected adipose stem cells to treat surgically-induced osteoarthritis in goats. Tissue Eng Part A. 2019;25(13–14):990–1000.

    Article  CAS  PubMed  Google Scholar 

  374. Li X, et al. Species-specific biological effects of FGF-2 in articular cartilage: Implication for distinct roles within the FGF receptor family. J Cell Biochem. 2012;113(7):2532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Li Y, et al. Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(2):266–74.

    Article  CAS  Google Scholar 

  376. Gigout A, et al. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthr Cartil. 2017;25(11):1858–67.

    Article  CAS  Google Scholar 

  377. Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22(4):742–50.

    Article  CAS  PubMed  Google Scholar 

  378. Cucchiarini M, et al. Effects of TGF-β overexpression via rAAV gene transfer on the early repair processes in an osteochondral defect model in minipigs. Am J Sports Med. 2018;46(8):1987–96.

    Article  PubMed  Google Scholar 

  379. Martinez-Redondo P, et al. αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein Cell. 2020:219–26.

  380. Xu Z, et al. Danshensu inhibits the IL-1β-induced inflammatory response in chondrocytes and osteoarthritis possibly via suppressing NF-κB signaling pathway. Mol Med. 2021;27(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D662–70.

    Article  CAS  PubMed  Google Scholar 

  382. Lee AS, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527(2):440–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Tardif G, et al. Collagenase 3 production by human osteoarthritic chondrocytes in response to growth factors and cytokines is a function of the physiologic state of the cells. Arthritis Rheum. 1999;42(6):1147–58.

    Article  CAS  PubMed  Google Scholar 

  384. Johnson K, Terkeltaub R. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthr Cartil. 2004;12(4):321–35.

    Article  CAS  Google Scholar 

  385. Shimo T, et al. Expression and role of IL-1β signaling in chondrocytes associated with retinoid signaling during fracture healing. Int J Mol Sci. 2020;21(7).

  386. O’Geen H, et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin. 2019;12(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  387. Alves E, et al. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev. 2021;21:592–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Nishimasu H, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361(6408):1259–62.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  389. Li T, et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther. 2023;8(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Gao L, et al. Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol. 2017;35(8):789–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Miller SM, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020;38(4):471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Walton RT, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368(6488):290–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  393. Kim HK, et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol. 2018;36(3):239–41.

    Article  CAS  PubMed  Google Scholar 

  394. Cullot G, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun. 2019;10(1):1136.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  395. Yang Y, et al. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front Med (Lausanne). 2021;8:649896.

    Article  PubMed  Google Scholar 

  396. Strecker J, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. 2019;10(1):212.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  397. Moon SB, et al. Improving CRISPR genome editing by engineering guide RNAs. Trends Biotechnol. 2019;37(8):870–81.

    Article  CAS  PubMed  Google Scholar 

  398. Gleditzsch D, et al. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures. RNA Biol. 2019;16(4):504–17.

    Article  PubMed  Google Scholar 

  399. Zhang X-H, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  400. Gaudelli NM, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  401. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  402. Charlesworth CT, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Kim S, et al. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018;28(3):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Gyngell C, Douglas T, Savulescu J. The ethics of germline gene editing. J Appl Philos. 2017;34(4):498–513.

    Article  PubMed  Google Scholar 

  405. O’Brien J, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.

    Article  CAS  PubMed  Google Scholar 

  406. Ramos YF, Meulenbelt I. The role of epigenetics in osteoarthritis: current perspective. Curr Opin Rheumatol. 2017;29(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  407. Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Translat. 2017;9:76–88.

    Article  PubMed  PubMed Central  Google Scholar 

  408. Li S, Huang L. Nonviral gene therapy: Promises and challenges. Gene Ther. 2000;7(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  409. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res. 2015;9(1):Ge01-6.

    PubMed  PubMed Central  Google Scholar 

  410. Mobasheri A, et al. Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: Biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr Opin Rheumatol. 2019;31(1):80–9.

    Article  PubMed  Google Scholar 

  411. Lim CL, et al. Immunogenicity and immunomodulatory effects of the human chondrocytes, hChonJ. BMC Musculoskelet Disord. 2017;18(1):199.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Greco KV, et al. High density micromass cultures of a human chondrocyte cell line: A reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol. 2011;82(12):1919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Uzieliene I, et al. Non-viral gene therapy for osteoarthritis. Front Bioeng Biotechnol. 2020;8:618399.

    Article  PubMed  Google Scholar 

  414. Mashel TV, et al. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials. 2020;258:120282.

    Article  CAS  PubMed  Google Scholar 

  415. Li X, et al. Nanoparticle-cartilage interaction: Pathology-based intra-articular drug delivery for osteoarthritis therapy. Nanomicro Lett. 2021;13(1):149.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This work was supported by grants by Zhejiang Provincial Natural Science Foundation of China (LZ23H140001), Zhejiang Qianjiang Talent Program (21040040-E), a startup grant from Zhejiang Sci-Tech University (18042290-Y), the Fundamental Research Funds of Zhejiang Sci-Tech University (2021Q031), funds from National Natural Science Foundation of China (81900806, 81400489), Jiaxing Science Technology Foundation (2023AY11045, 2020AY10001), Zhejiang Health Foundation (2022507032), Social Development Public Welfare Foundation of Ningbo (No.202002N3150, 2022S035), Innovation Project of Distinguished Medical Team in Ningbo (No.2022020405). We apologize to the many researchers whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

RV: data analysis, literature formation. XZ, HL: literature formation, supervision, GC: literature formation, supervision, and grant holder.

Corresponding authors

Correspondence to Haibo Li or Guiqian Chen.

Ethics declarations

Ethics approval

Ethics approval and consent to participate: not applicable.

Consent for publication

All the authors agree current state of the manuscript to be submitted to the journal.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlashi, R., Zhang, X., Li, H. et al. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 25, 339–367 (2024). https://doi.org/10.1007/s11154-023-09860-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09860-y

Keywords

Navigation