Skip to main content
Log in

Design and simulation of a photocatalysis reactor for rhodamine B degradation using cobalt-doped ZnO film

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This research aims to investigate the simulation of a pilot-scale photocatalytic reactor based on cobalt-doped ZnO films, where the photocatalyst films were initially assessed on a lab scale for the degradation of rhodamine B (RhB) under visible light. ZnO and cobalt-doped ZnO catalyst films were firstly synthesized by means of the spray pyrolysis technique. The catalyst films were then characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and diffuse spectroscopy (EDS) (DRS). The lattice parameters of cobalt-doped ZnO films, as well as their bandgap values and structures, have been computed applying the density functional theory (DFT). Box-Behnken Design (BBD) was used to assess the effect of the main operating parameters (contact time, RhB concentration, and cobalt doping percentage) on the photocatalytic activity that achieved 93% using 10% of cobalt doping ZnO within 120 min. Aspen Plus was used to model and design the photocatalysis process at the pilot scale based on the lab-scale results. The findings of this study suggest that cobalt-doped ZnO films could be effectively used for the photodegradation of organic pollutants and offer potential perspectives on their large-scale application for the treatment of real liquid effluents using solar light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Naciri Y, Hsini A, Bouziani A et al (2021) Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: recent progress, new trends, and future perspectives. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2021.1877977

    Article  Google Scholar 

  2. Brini L, Hsini A, Naciri Y et al (2021) Synthesis and characterization of arginine-doped heliotrope leaves with high clean-up capacity for crystal violet dye from aqueous media. Water Sci Technol. https://doi.org/10.2166/wst.2021.446

    Article  Google Scholar 

  3. Dra A, Tanji K, Arrahli A et al (2020) Valorization of oued sebou natural sediments (Fez-Morocco Area) as adsorbent of methylene blue dye: kinetic and thermodynamic study. Sci World J. https://doi.org/10.1155/2020/2187129

    Article  Google Scholar 

  4. Thiam A, Tanji K, Assila O et al (2020) Valorization of date pits as an effective biosorbent for Remazol brilliant blue adsorption from aqueous solution. J Chem. https://doi.org/10.1155/2020/4173152

    Article  Google Scholar 

  5. Dra A, Tanji K, Arrahli A, et al (2020) Erratum: Valorization of oued sebou natural sediments (Fez-Morocco Area) as adsorbent of methylene blue dye: kinetic and thermodynamic study [The Scientific World Journal (2020) 2020 (2187129), https://doi.org/10.1155/2020/2187129]. Sci World J 4815767. https://doi.org/10.1155/2020/4815767

  6. Zouheir M, Assila O, Tanji K et al (2021) Bandgap optimization of sol-gel-derived TiO2 and its effect on the photodegradation of formic acid. Nano Future. https://doi.org/10.1088/2399-1984/abfb7d

    Article  Google Scholar 

  7. Wang NN, Hu Q, Hao LL, Zhao Q (2019) Degradation of acid organic 7 by modified coal fly ash-catalyzed Fenton-like process: kinetics and mechanism study. Int J Environ Sci Technol 16:89–100. https://doi.org/10.1007/s13762-018-1965-7

    Article  CAS  Google Scholar 

  8. Saher R, Hanif MA, Mansha A et al (2021) Sunlight-driven photocatalytic degradation of rhodamine B dye by Ag/FeWO4/g-C3N4 composites. Int J Environ Sci Technol 18:927–938. https://doi.org/10.1007/s13762-020-02888-6

    Article  CAS  Google Scholar 

  9. Hsini A, Benafqir M, Naciri Y et al (2021) Synthesis of an arginine-functionalized polyaniline@FeOOH composite with high removal performance of hexavalent chromium ions from water: adsorption behavior, regeneration and process capability studies. Colloids Surf A 617:126274. https://doi.org/10.1016/j.colsurfa.2021.126274

    Article  CAS  Google Scholar 

  10. Singh R (2021) Different anticipated criteria to achieve novel and efficient photocatalysis via green ZnO: scope and challenges. Springer, Berlin

    Book  Google Scholar 

  11. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/9/3/035004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharma SS, Palaty S, John AK (2021) Band gap modified zinc oxide nanoparticles: an efficient visible light active catalyst for wastewater treatment. Int J Environ Sci Technol 18:2619–2632. https://doi.org/10.1007/s13762-020-02976-7

    Article  CAS  Google Scholar 

  13. Zouhier M, Tanji K, Navio JA et al (2020) Preparation of ZnFe2O4/ZnO composite: effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination. J Photochem Photobiol A 390:112305. https://doi.org/10.1016/j.jphotochem.2019.112305

    Article  CAS  Google Scholar 

  14. Tanji K, Navio JA, Chaqroune A et al (2020) Fast photodegradation of rhodamine B and caffeine using ZnO-hydroxyapatite composites under UV-light illumination. Catal Today. https://doi.org/10.1016/j.cattod.2020.07.044

    Article  Google Scholar 

  15. Tanji K, Navio JA, Naja J et al (2019) Extraordinary visible photocatalytic activity of a Co0.2Zn0.8O system studied in the Remazol BB oxidation. J Photochem Photobiol A 382:111877. https://doi.org/10.1016/j.jphotochem.2019.111877

    Article  CAS  Google Scholar 

  16. Bairy R, Patil PS, Maidur SR et al (2019) The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications. RSC Adv 9:22302–22312. https://doi.org/10.1039/c9ra03006a

    Article  CAS  Google Scholar 

  17. Rezaei M, Nezamzadeh-Ejhieha A (2020) The ZnO-NiO nano-composite: a brief characterization, kinetic and thermodynamic study and study the Arrhenius model on the sulfasalazine photodegradation. Int J Hydrog Energy 45:24749–24764. https://doi.org/10.1016/j.ijhydene.2020.06.258

    Article  CAS  Google Scholar 

  18. Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299. https://doi.org/10.1016/j.ultsonch.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  19. Lu Y, Lin Y, Wang D et al (2011) A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res 4:1144–1152. https://doi.org/10.1007/s12274-011-0163-4

    Article  CAS  Google Scholar 

  20. Huynh TP, Pedersen C, Wittig NK, Birkedal H (2018) Precipitation of inorganic phases through a photoinduced pH jump: from vaterite spheroids and shells to ZnO flakes and hexagonal plates. Cryst Growth Des 18:1951–1955. https://doi.org/10.1021/acs.cgd.8b00093

    Article  CAS  Google Scholar 

  21. Vallejo W, Cantillo A, Salazar B et al (2020) Comparative study of ZnO thin films doped with transition metals (Cu and Co) for methylene blue photodegradation under visible irradiation. Catalysts 10:528. https://doi.org/10.3390/catal10050528

    Article  CAS  Google Scholar 

  22. Dhruvashi SPK (2016) Effect of cobalt doping on ZnO thin films deposited by sol-gel method. Thin Solid Films 612:55–60. https://doi.org/10.1016/j.tsf.2016.05.028

    Article  CAS  Google Scholar 

  23. Kayani ZN, Shah I, Zulfiqar B et al (2017) Structural, optical and magnetic properties of nanocrystalline Co-doped zno thin films grown by sol-gel. Zeitschrift fur Naturforsch A 73:13–21. https://doi.org/10.1515/zna-2017-0302

    Article  CAS  Google Scholar 

  24. Azab AA, Esmail SA, Abdelamksoud MK (2019) Studying the effect of cobalt doping on optical and magnetic properties of zinc oxide nanoparticles. SILICON 11:165–174. https://doi.org/10.1007/s12633-018-9902-4

    Article  CAS  Google Scholar 

  25. Ben AS, Belhadjltaief H, Duponchel B et al (2019) Enhanced photocatalytic activity against crystal violet dye of Co and In doped ZnO thin films grown on PEI flexible substrate under UV and sunlight irradiations. Heliyon 5:e01912. https://doi.org/10.1016/j.heliyon.2019.e01912

    Article  Google Scholar 

  26. Li G, Wang H, Wang Q et al (2015) Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field. Nanoscale Res Lett 10:1–8. https://doi.org/10.1186/s11671-015-0834-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Islam MR, Rahman M, Farhad SFU, Podder J (2019) Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf Interfaces 16:120–126. https://doi.org/10.1016/j.surfin.2019.05.007

    Article  CAS  Google Scholar 

  28. Abirami N, Arulanantham AMS, Wilson KSJ (2020) Structural and magnetic properties of cobalt doped ZnO thin films deposited by cost effective nebulizer spray pyrolysis technique. Mater Res Express 7:026405. https://doi.org/10.1088/2053-1591/ab6e27

    Article  CAS  Google Scholar 

  29. Benramache S, Benhaoua B (2012) Influence of substrate temperature and Cobalt concentration on structural and optical properties of ZnO thin films prepared by ultrasonic spray technique. Superlattices Microstruct 52:807–815. https://doi.org/10.1016/j.spmi.2012.06.005

    Article  CAS  Google Scholar 

  30. Vempati S, Shetty A, Dawson P et al (2012) Solution-based synthesis of cobalt-doped ZnO thin films. Thin Solid Films 524:137–143. https://doi.org/10.1016/j.tsf.2012.10.008

    Article  CAS  Google Scholar 

  31. Monsalve-Bravo GM, Moscoso-Vasquez HM, Alvarez H (2014) Scaleup of batch reactors using phenomenological-based models. Ind Eng Chem Res 53:9439–9453. https://doi.org/10.1021/ie500587r

    Article  CAS  Google Scholar 

  32. Martínez Ruano JA, Taimbu de la Cruz CA, Orrego Alzate CE, Cardona Alzate CA (2019) Techno-economic analysis of chitosan-based hydrogels production. In: Mondal M (ed) Cellulose-based superabsorbent hydrogels. Springer, Cham, pp 1769–1790

    Chapter  Google Scholar 

  33. Hachhach M, Akram H, Hanafi M et al (2019) Simulation and sensitivity analysis of molybdenum disulfide nanoparticle production using aspen plus. Int J Chem Eng. https://doi.org/10.1155/2019/3953862

    Article  Google Scholar 

  34. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  35. Giannozzi P, Andreussi O, Brumme T et al (2017) Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys Condens Matter 29:465901. https://doi.org/10.1088/1361-648X/aa8f79

    Article  CAS  PubMed  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  37. Vanderbilt D (1990) Rapid communications. Phys Rev B 41:7892–7895. https://doi.org/10.1103/PhysRevB.41.7892

    Article  CAS  Google Scholar 

  38. Naciri Y, Hsini A, Ajmal Z et al (2020) Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. J Colloid Interface Sci 572:269–280. https://doi.org/10.1016/j.jcis.2020.03.105

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Chen J, Wu Z et al (2021) Enhanced visible-light photocatalytic performances of ZnO through loading AgI and coupling piezo-photocatalysis. J Alloys Compd 852:156848. https://doi.org/10.1016/j.jallcom.2020.156848

    Article  CAS  Google Scholar 

  40. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

    Article  CAS  Google Scholar 

  41. Reyes-Lúa A, Solvik M, Skogestad S (2016) Inclusion of thermodynamic equations for efficient steadystate process optimization. Computer aided chemical engineering. Elsevier, Amsterdam, pp 613–618

    Google Scholar 

  42. Al-Atta A, Huddle T, Rodríguez YG et al (2018) A techno-economic assessment of the potential for combining supercritical water oxidation with ‘in-situ’ hydrothermal synthesis of nanocatalysts using a counter current mixing reactor. Chem Eng J 344:431–440. https://doi.org/10.1016/j.cej.2018.03.058

    Article  CAS  Google Scholar 

  43. Chandraseagar S, Abdulrazik AH, Abdulrahman SN, Abdaziz MA (2019) Aspen Plus simulation and optimization of industrial spent caustic wastewater treatment by wet oxidation method. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/702/1/012011

    Article  Google Scholar 

  44. Jellal I, Nouneh K, Jedryka J et al (2020) Non-linear optical study of hierarchical 3D Al doped ZnO nanosheet arrays deposited by successive ionic adsorption and reaction method. Opt Laser Technol 130:106348. https://doi.org/10.1016/j.optlastec.2020.106348

    Article  CAS  Google Scholar 

  45. Tarwal NL, Gurav KV, Mujawar SH et al (2014) Photoluminescence and photoelectrochemical properties of the spray deposited copper doped zinc oxide thin films. Ceram Int 40:7669–7677. https://doi.org/10.1016/j.ceramint.2013.12.108

    Article  CAS  Google Scholar 

  46. Jellal I, Ahmoum H, Khaaissa Y et al (2019) Experimental and ab-initio investigation of the microstructure and optoelectronic properties of FCM–CVD-prepared Al-doped ZnO thin films. Appl Phys A 125:1–7. https://doi.org/10.1007/s00339-019-2947-4

    Article  CAS  Google Scholar 

  47. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  48. Abu Amr SS, Aziz HA, Bashir MJK (2014) Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone. Appl Water Sci 4:231–239. https://doi.org/10.1007/s13201-014-0156-z

    Article  CAS  Google Scholar 

  49. Nam S-N, Cho H, Han J et al (2018) Photocatalytic degradation of acesulfame K: optimization using the Box-Behnken design (BBD). Process Saf Environ Prot 113:10–21. https://doi.org/10.1016/J.PSEP.2017.09.002

    Article  CAS  Google Scholar 

  50. Ghafari S, Abdul H, Hasnain M, Akbar A (2009) Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater J 163:650–656. https://doi.org/10.1016/j.jhazmat.2008.07.090

    Article  CAS  Google Scholar 

  51. Sohrabi S, Akhlaghian F (2015) Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. Process Saf Environ Prot 99:120–128. https://doi.org/10.1016/j.psep.2015.10.016

    Article  CAS  Google Scholar 

  52. Loqman A, El Bali B, Lützenkirchen J et al (2017) Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology. Appl Water Sci 7:3649–3660. https://doi.org/10.1007/s13201-016-0509-x

    Article  CAS  Google Scholar 

  53. Kiwaan HA, Atwee TM, Azab EA, El-Bindary AA (2019) Efficient photocatalytic degradation of acid red 57 using synthesized ZnO nanowires. J Chin Chem Soc 66:89–98. https://doi.org/10.1002/jccs.201800092

    Article  CAS  Google Scholar 

  54. Sheik Mydeen S, Raj Kumar R, Kottaisamy M, Vasantha VS (2020) Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. J Saudi Chem Soc 24:393–406. https://doi.org/10.1016/j.jscs.2020.03.003

    Article  CAS  Google Scholar 

  55. Samet B, Mnif T, Chaabouni M (2007) Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cem Concr Compos 29:741–749. https://doi.org/10.1016/j.cemconcomp.2007.04.012

    Article  CAS  Google Scholar 

  56. Boughelout A, Macaluso R, Kechouane M, Trari M (2020) Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films. Reac Kinet Mech Cat 129:1115–1130. https://doi.org/10.1007/s11144-020-01741-8

    Article  CAS  Google Scholar 

  57. Huang Q, Zhao Q, Yang C, Jiang T (2020) Facile synthesis of mesoporous graphitic carbon nitride/SnO2 nanocomposite photocatalysts for the enhanced photodegradation of Rhodamine B. Reac Kinet Mech Cat 129:535–550. https://doi.org/10.1007/s11144-019-01712-8

    Article  CAS  Google Scholar 

  58. Dai WL, Xu H, Yang LX et al (2015) Ultrasonic-assisted facile synthesis of plasmonic ag@agcl cuboids with high visible light photocatalytic performance for rhodamine b degradation. Reac Kinet Mech Cat 115:773–786. https://doi.org/10.1007/s11144-015-0870-z

    Article  CAS  Google Scholar 

  59. Cheng J, Zhao S, Gao W et al (2017) Au/Fe3O4@TiO2 hollow nanospheres as efficient catalysts for the reduction of 4-nitrophenol and photocatalytic degradation of rhodamine B. Reac Kinet Mech Cat 121:797–810. https://doi.org/10.1007/s11144-017-1185-z

    Article  CAS  Google Scholar 

  60. Shen K, Gondal MA, Li Z et al (2013) 450 nm visible light-induced photosensitized degradation of Rhodamine B molecules over BiOBr in aqueous solution. Reac Kinet Mech Cat 109:247–258. https://doi.org/10.1007/s11144-013-0540-y

    Article  CAS  Google Scholar 

  61. Liu Y, Zhang Q, Yuan H et al (2021) Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. J Alloys Compd 868:158723. https://doi.org/10.1016/j.jallcom.2021.158723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In the present work, the authors are grateful for the Innovation Center (University Sidi Mohammed Ben Abdellah of Fez, Morocco for performing the XRD analysis and for the general research services (SEM and DRS) at the CNRST (Morocco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Tanji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanji, K., Zouheir, M., Hachhach, M. et al. Design and simulation of a photocatalysis reactor for rhodamine B degradation using cobalt-doped ZnO film. Reac Kinet Mech Cat 134, 1017–1038 (2021). https://doi.org/10.1007/s11144-021-02116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02116-3

Keywords

Navigation