Skip to main content

Advertisement

Log in

The Patient Generated Index (PGI) as an early-warning system for predicting brain health challenges: a prospective cohort study for people living with Human Immunodeficiency Virus (HIV)

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

In research people are often asked to fill out questionnaires about their health and functioning and some of the questions refer to serious health concerns. Typically, these concerns are not identified until the statistician analyses the data. An alternative is to use an individualized measure, the Patient Generated Index (PGI) where people are asked to self-nominate areas of concern which can then be dealt with in real-time. This study estimates the extent to which self-nominated areas of concern related to mood, anxiety and cognition predict the presence or occurrence of brain health outcomes such as depression, anxiety, psychological distress, or cognitive impairment among people aging with HIV at study entry and for successive assessments over 27 months.

Methods

The data comes from participants enrolled in the Positive Brain Health Now (+ BHN) cohort (n = 856). We analyzed the self-nominated areas that participants wrote on the PGI and classified them into seven sentiment groups according to the type of sentiment expressed: emotional, interpersonal, anxiety, depressogenic, somatic, cognitive and positive sentiments. Tokenization was used to convert qualitative data into quantifiable tokens. A longitudinal design was used to link these sentiment groups to the presence or emergence of brain health outcomes as assessed using standardized measures of these constructs: the Hospital Anxiety and Depression Scale (HADS), the Mental Health Index (MHI) of the RAND-36, the Communicating Cognitive Concerns Questionnaire (C3Q) and the Brief Cognitive Ability Measure (B-CAM). Logistic regressions were used to estimate the goodness of fit of each model using the c-statistic.

Results

Emotional sentiments predicted all of the brain health outcomes at all visits with adjusted odds ratios (OR) ranging from 1.61 to 2.00 and c-statistics > 0.73 (good to excellent prediction). Nominating an anxiety sentiment was specific to predicting anxiety and psychological distress (OR 1.65 & 1.52); nominating a cognitive concern was specific to predicting self-reported cognitive ability (OR 4.78). Positive sentiments were predictive of good cognitive function (OR 0.36) and protective of depressive symptoms (OR 0.55).

Conclusions

This study indicates the value of using this semi-qualitative approach as an early-warning system in predicting brain health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [MH], upon reasonable request.

References

  1. Zimmerman, M., & McGlinchey, J. B. (2008). Why don’t psychiatrists use scales to measure outcome when treating depressed patients? Journal of Clinical Psychiatry, 69(12), 1916–1919.

    Article  PubMed  Google Scholar 

  2. Langa, K. M., & Levine, D. A. (2014). The diagnosis and management of mild cognitive impairment: A clinical review. JAMA, 312(23), 2551–2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Field, J., Holmes, M. M., & Newell, D. (2019). PROMs data: Can it be used to make decisions for individual patients? A narrative review. Patient Related Outcome Measures, 10, 233–241.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Campbell, R., Ju, A., King, M. T., & Rutherford, C. (2022). Perceived benefits and limitations of using patient-reported outcome measures in clinical practice with individual patients: A systematic review of qualitative studies. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 31(6), 1597–1620.

    Article  PubMed  Google Scholar 

  5. Mayo, N. E., Brouillette, M. J., Scott, S. C., Harris, M., Smaill, F., Smith, G., et al. (2020). Relationships between cognition, function, and quality of life among HIV+ Canadian men. Quality of Life Research, 29(1), 37–55.

    Article  PubMed  Google Scholar 

  6. Mayo, N. E., Anderson, R., Brouillette, M.-J., Fellows, L. K., Bartlett, S., Brew, B. J., et al. (2016). Understanding and optimizing brain health in HIV now: Protocol for a longitudinal cohort study with multiple randomized controlled trials. BMC Neurology, 16, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prince, M. J. (2017). Persons with invisible disabilities and workplace accommodation: Findings from a scoping literature review. Journal of Vocational Rehabilitation., 46(1), 75–86.

    Article  Google Scholar 

  8. Möller, H.-J. (2009). Standardised rating scales in psychiatry: Methodological basis, their possibilities and limitations and descriptions of important rating scales. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry, 10(1), 6–26.

    Article  PubMed  Google Scholar 

  9. Ruta, D. A., Garratt, A. M., Leng, M., Russell, I. T., & MacDonald, L. M. (1994). A New approach to the measurement of quality of life: The Patient-Generated Index. Medical Care, 32(11), 1109–1126.

    Article  CAS  PubMed  Google Scholar 

  10. Aburub, A. S., Gagnon, B., Rodríguez, A. M., & Mayo, N. E. (2016). Using a personalized measure (Patient Generated Index (PGI)) to identify what matters to people with cancer. Supportive Care in Cancer, 24(1), 437–445.

    Article  PubMed  Google Scholar 

  11. Jim, H. S. L., Hoogland, A. I., Brownstein, N. C., Barata, A., Dicker, A. P., Knoop, H., et al. (2020). Innovations in research and clinical care using patient-generated health data. CA: A Cancer Journal for Clinicians, 70(3), 182–99.

    PubMed  Google Scholar 

  12. Tang, J. A., Oh, T., Scheer, J. K., & Parsa, A. T. (2014). The current trend of administering a patient-generated index in the oncological setting: A systematic review. Oncology Reviews, 8(1), 7–12.

    Google Scholar 

  13. Aburub, A. S., Gagnon, B., Rodríguez, A. M., & Mayo, N. E. (2016). Agreement between personally generated areas of quality of life concern and standard outcome measures in people with advanced cancer. Supportive Care in Cancer, 24(9), 3831–3838.

    Article  PubMed  Google Scholar 

  14. Roebuck, M., Aubry, T., Leclerc, V., Bergeron-Leclerc, C., Briand, C., Durbin, J., et al. (2021). Validation of the Patient Generated Index for people with severe mental illness. Psychiatric Rehabilitation Journal, 44(4), 396.

    Article  PubMed  Google Scholar 

  15. Witham, M. D., Fulton, R. L., Wilson, L., Leslie, C. A., & McMurdo, M. E. T. (2008). Validation of an individualised quality of life measure in older day hospital patients. Health and Quality of Life Outcomes, 6, 1–7.

    Article  Google Scholar 

  16. Hogan, M., Nangle, N., Morrison, T., & McGuire, B. (2013). Evaluation of the Patient Generated Index as a measure of quality-of-life in people with severe traumatic brain injury. Brain Injury, 27, 273–280.

    Article  PubMed  Google Scholar 

  17. Mayo, N. E., Aburub, A., Brouillette, M. J., Kuspinar, A., Moriello, C., Rodriguez, A. M., et al. (2017). In support of an individualized approach to assessing quality of life: Comparison between Patient Generated Index and standardized measures across four health conditions. Quality of Life Research, 26(3), 601–609.

    Article  PubMed  Google Scholar 

  18. Askari, S., Fellows, L., Brouillette, M.-J., Moriello, C., Duracinsky, M., & Mayo, N. E. (2018). Development of an item pool reflecting cognitive concerns expressed by people with HIV. American Journal of Occupational Therapy, 72(2), 7202205070p1.

    Article  Google Scholar 

  19. Askari, S., Fellows, L. K., Brouillette, M. J., & Mayo, N. E. (2021). Development and validation of a voice-of-the-patient measure of cognitive concerns experienced by people living with HIV. Quality of Life Research, 30(3), 921–930.

    Article  PubMed  Google Scholar 

  20. Brouillette, M.-J., Fellows, L. K., Finch, L., Thomas, R., & Mayo, N. E. (2019). Properties of a brief assessment tool for longitudinal measurement of cognition in people living with HIV. PLoS ONE, 14(3), e0213908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brouillette, M.-J., Fellows, L. K., Palladini, L., Finch, L., Thomas, R. J., & Mayo, N. E. (2015). Quantifying cognition at the bedside: A novel approach combining cognitive symptoms and signs in HIV. McGill University.

    Google Scholar 

  22. Brouillette, M. J., Mayo, N., Fellows, L. K., Lebedeva, E., Higgins, J., Overton, E. T., et al. (2015). A better screening tool for HIV-associated neurocognitive disorders: Is it what clinicians need? AIDS (London, England), 29(8), 895–902.

    Article  PubMed  Google Scholar 

  23. Mayo, N. E., Brouillette, M. J., & Fellows, L. K. (2018). Estimates of prevalence of cognitive impairment from research studies can be affected by selection bias. Journal of Acquired Immune Deficiency Syndromes, 78(2), e7–e8.

    Article  PubMed  Google Scholar 

  24. Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1), 5.

    Article  Google Scholar 

  25. Mendonca, D. (2012). Pattern of sentiment: Following a Deweyan suggestion. Transactions of the Charles S Peirce Society, 48(2), 209–227.

    Article  Google Scholar 

  26. Ge-Stadnyk, J., Alonso-Vazquez, M., & Gretzel, U. (2017). Sentiment analysis: A review.

  27. Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of Natural Language Processing, 2(2010), 627–666.

    Google Scholar 

  28. Global IGI. (2019). Information Resources Management A. Natural language processing: Concepts, methodologies, tools, and applications. IGI Global. Retrieved from http://services.igi-global.com/resolvedoi/resolve.aspx?https://doi.org/10.4018/978-1-7998-0951-7

  29. Zunic, A., Corcoran, P., & Spasic, I. (2020). Sentiment analysis in health and well-being: Systematic review. JMIR Medical Informatics, 8(1), e16023.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mayo, N. E., Brouillette, M. J., Scott, S. C., Harris, M., Smaill, F., Smith, G., et al. (2020). Relationships between cognition, function, and quality of life among HIV+ Canadian men. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 29(1), 37–55.

    Article  PubMed  Google Scholar 

  31. Lam, A., Mayo, N. E., Scott, S., Brouillette, M. J., & Fellows, L. K. (2019). HIV-related stigma affects cognition in older men living with HIV. Journal of Acquired Immune Deficiency Syndromes, 80(2), 198–204.

    Article  PubMed  Google Scholar 

  32. Kendall, C. E., Wong, J., Taljaard, M., Glazier, R. H., Hogg, W., Younger, J., et al. (2014). A cross-sectional, population-based study measuring comorbidity among people living with HIV in Ontario. BMC Public Health, 14, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Olssøn, I., Mykletun, A., & Dahl, A. A. (2005). The hospital anxiety and depression rating scale: A cross-sectional study of psychometrics and case finding abilities in general practice. BMC Psychiatry, 5(1), 46.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu, Y., Levis, B., Sun, Y., He, C., Krishnan, A., Neupane, D., et al. (2021). Accuracy of the Hospital Anxiety and Depression Scale Depression subscale (HADS-D) to screen for major depression: Systematic review and individual participant data meta-analysis. BMJ, 373, n972.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hays, R. D., & Morales, L. S. (2001). The RAND-36 measure of health-related quality of life. Annals of Medicine, 33(5), 350–357.

    Article  CAS  PubMed  Google Scholar 

  36. Holden, L., Dobson, A., Byles, J., Loxton, D., Dolja-Gore, X., Hockey, R., & Harris, M. (2013) Mental health: Findings from the Australian Longitudinal Study on Women’s Health.

  37. Kelly, M. J., Dunstan, F. D., Lloyd, K., & Fone, D. L. (2008). Evaluating cutpoints for the MHI-5 and MCS using the GHQ-12: A comparison of five different methods. BMC Psychiatry, 8(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Askari, S., Fellows, L., Brouillette, M.-J., Moriello, C., Duracinsky, M., & Mayo, N. E. (2018). Development of an Item Pool Reflecting Cognitive Concerns Expressed by People With HIV. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 72(2), 1–7202205070.

    Article  Google Scholar 

  39. Koski, L., Brouillette, M. J., Lalonde, R., Hello, B., Wong, E., Tsuchida, A., et al. (2011). Computerized testing augments pencil-and-paper tasks in measuring HIV-associated mild cognitive impairment*. HIV Medicine., 12(8), 472–480.

    Article  CAS  PubMed  Google Scholar 

  40. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780.

    Article  Google Scholar 

  41. Islam, M. R., Kabir, M. A., Ahmed, A., Kamal, A. R. M., Wang, H., & Ulhaq, A. (2018). Depression detection from social network data using machine learning techniques. Health Information Science and Systems, 6(1), 8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schoenleber, M., Chow, P. I., & Berenbaum, H. (2014). Self-conscious emotions in worry and generalized anxiety disorder. British Journal of Clinical Psychology, 53(3), 299–314.

    Article  PubMed  Google Scholar 

  43. Grov, C., Golub, S. A., Parsons, J. T., Brennan, M., & Karpiak, S. E. (2010). Loneliness and HIV-related stigma explain depression among older HIV-positive adults. AIDS Care, 22(5), 630–639.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Munnes, S., Harsch, C., Knobloch, M., Vogel, J. S., Hipp, L., & Schilling, E. (2022). Examining sentiment in complex texts. A comparison of different computational approaches. Frontiers in Big Data, 5, 886362.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nelson, L. K., Burk, D., Knudsen, M., & McCall, L. (2018). The future of coding: A comparison of hand-coding and three types of computer-assisted text analysis methods. Sociological Methods & Research., 50(1), 202–237.

    Article  Google Scholar 

  46. Puschmann, C., & Powell, A. (2018). Turning words into consumer preferences: How sentiment analysis is framed in research and the news media. Social Media + Society, 4(3), 2056305118797724.

    Article  Google Scholar 

  47. van Atteveldt, W., van der Velden, M. A. C. G., & Boukes, M. (2021). The validity of sentiment analysis: Comparing manual annotation, crowd-coding, dictionary approaches, and Machine Learning Algorithms. Communication Methods and Measures, 15(2), 121–140.

    Article  Google Scholar 

  48. Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., & Schwartz, H. (2018). A Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences of the United States of America, 115(44), 11203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Humayun, M. M. (2023). The Patient Generated Index as an early-warning system for predicting brain health challenges: A prospective cohort study for people living with HIV. eScholarship: McGill University.

  50. Sheikh, M. A. (2017). Confounding and statistical significance of indirect effects: Childhood adversity, education, smoking, and anxious and depressive symptomatology. Frontiers in Psychology, 8, 1317.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Murman, D. L. (2015). The impact of age on cognition. Seminars in Hearing, 36(3), 111–121.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Grasshoff, J., Beller, J., Kuhlmann, B. G., Geyer, S., & Coin, A. (2021). Increasingly capable at the ripe old age? Cognitive abilities from 2004 to 2013 in Germany, Spain, and Sweden. PLoS ONE, 16(7), e0254038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salk, R. H., Hyde, J. S., & Abramson, L. Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143(8), 783–822.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Albert, P. R. (2015). Why is depression more prevalent in women? Journal of Psychiatry & Neuroscience: JPN, 40(4), 219–221.

    Article  Google Scholar 

  55. Zhao, L., Han, G., Zhao, Y., Jin, Y., Ge, T., Yang, W., et al. (2020). Gender differences in depression: Evidence from genetics. Frontiers in Genetics., 11, 1145.

    Article  Google Scholar 

  56. Inceer, M., Brouillette, M., Fellows, L., & Mayo, N. (2018). Frailty phenotype in Canadian men and women with HIV. from Jules: Fried Frailty test is too simple in HIV. NATAP.

  57. Vilca, L. W., Chávez, B. V., Fernández, Y. S., & Caycho-Rodríguez, T. (2022). Spanish Version of the Revised Mental Health Inventory-5 (R-MHI-5): New Psychometric Evidence from the Classical Test Theory (CTT) and the Item Response Theory Perspective (IRT). Trends in Psychology, 30(1), 111–128.

    Article  Google Scholar 

  58. World Health Organization (WHO). WHO HIV-BREF 2002. Retrieved from https://www.who.int/mental_health/publications/whoqol_hiv_bref.pdf.

  59. Brouillette, M.-J., Koski, L., Forcellino, L., Gasparri, J., Brew, B. J., Fellows, L. K., et al. (2021). Predicting occupational outcomes from neuropsychological test performance in older people with HIV. AIDS (London, England)., 35(11), 1765–1774.

    Article  PubMed  Google Scholar 

  60. Hanley, J. A., Negassa, A., Edwardes, M. D. D., & Forrester, J. E. (2003). Statistical analysis of correlated data using generalized estimating equations: An orientation. American Journal of Epidemiology., 157(4), 364–75.

    Article  PubMed  Google Scholar 

  61. Ballinger, G. A. (2004). Using generalized estimating equations for longitudinal data analysis. Organizational Research Methods, 7(2), 127–150.

    Article  Google Scholar 

  62. Ghisletta, P., & Spini, D. (2004). An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. Journal of Educational and Behavioral Statistics, 29, 421–437.

    Article  Google Scholar 

  63. Gallis, J. A., & Turner, E. L. (2019). Relative measures of association for binary outcomes: Challenges and recommendations for the global health researcher. Annals of Global Health, 85(1), 137.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ranganathan, P., Pramesh, C. S., & Aggarwal, R. (2017). Common pitfalls in statistical analysis: Logistic regression. Perspectives in Clinical Research, 8(3), 148–151.

    PubMed  PubMed Central  Google Scholar 

  65. Biswas, B., Husain, M., & Rahman, M. S. (2019). Review and evaluation of the concordance measures for assessing discrimination in the logistic regression methods. Journal of Statistical Research, 53, 63–77.

    Article  Google Scholar 

  66. Hajian-Tilaki, K. (2013). Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2), 627–635.

    PubMed  PubMed Central  Google Scholar 

  67. Mayo NE, International Society for Quality of Life R. (2015). Dictionary of quality of life and health outcomes measurement, 1st edn. International Society for Quality of Life Research (ISOQOL).

  68. Schneeweiss, S., Seeger, J. D., Maclure, M., Wang, P. S., Avorn, J., & Glynn, R. J. (2001). Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data. American Journal of Epidemiology, 154(9), 854–864.

    Article  CAS  PubMed  Google Scholar 

  69. Oliveros, J. C. Venny: An interactive tool for comparing lists with Venn’s diagrams. 2015 [updated 2015]. Retrieved 19 July, 2022, from https://bioinfogp.cnb.csic.es/tools/venny/index.html.

  70. Austin, P. C. (2009). Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Communications in Statistics—Simulation and Computation., 38(6), 1228–1234.

    Article  Google Scholar 

  71. Paul, R. H., Cho, K., Belden, A., Carrico, A. W., Martin, E., Bolzenius, J., et al. (2022). Cognitive phenotypes of HIV defined using a novel data-driven approach. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology., 17, 515–525.

    Article  PubMed  Google Scholar 

  72. Schoen, C. B., & Holtzer, R. (2017). Differential relationships of somatic and cognitive anxiety with measures of processing speed in older adults. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 24(5), 481–495.

    Article  PubMed  Google Scholar 

  73. Peters, N., Dal Bello-Haas, V., Packham, T., Chum, M., O’Connell, C., Johnston, W. S., et al. (2021). Do generic preference-based measures accurately capture areas of health-related quality of life important to individuals with amyotrophic lateral sclerosis: A content validation study. Patient Related Outcome Measures, 12, 191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kuspinar, A., Mate, K. K. V., Lafontaine, A. L., & Mayo, N. (2020). Validation of an individualized measure of quality of life, patient generated index, for use with people with Parkinson’s disease. Neurology Research International, 2020, 6916135.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zidarov, D., Zidarova-Carrié, A., Visca, R., Miller, J. M., Brecht, K., Viens, N., et al. (2020). Core patient-reported outcome domains for routine clinical care in chronic pain management: Patients’ and healthcare professionals’ perspective. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 29(7), 2007–2020.

    Article  PubMed  Google Scholar 

  76. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1), 7–15.

    Article  CAS  PubMed  Google Scholar 

  77. Damasio, A. R., Everitt, B. J., Bishop, D., Roberts, A. C., Robbins, T. W., & Weiskrantz, L. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 351(1346), 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  78. Reimann, M., & Bechara, A. (2010). The somatic marker framework as a neurological theory of decision-making: Review, conceptual comparisons, and future neuroeconomics research. Journal of Economic Psychology, 31(5), 767–776.

    Article  Google Scholar 

  79. Dang, J., King, K. M., & Inzlicht, M. (2020). Why are self-report and behavioral measures weakly correlated? Trends in Cognitive Sciences, 24(4), 267–269.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Barnier, E. M., & Collison, J. (2019). Experimental induction of self-focused attention via mirror gazing: Effects on body image, appraisals, body-focused shame, and self-esteem. Body Image, 30, 150–158.

    Article  PubMed  Google Scholar 

  81. Eri, I. (2019). Linguistic expressions of depressogenic schemata. Studies in Applied Linguistics & TESOL, 18, 20–32.

    Google Scholar 

  82. Al-Mosaiwi, M., & Johnstone, T. (2018). In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clinical Psychological Science: A Journal of the Association for Psychological Science, 6(4), 529–542.

    Article  PubMed  Google Scholar 

  83. Voyer, M., & Cappeliez, P. (2002). Congruency between depressogenic schemas and life events for the prediction of depressive relapse in remitted older patients. Behavioural and Cognitive Psychotherapy, 30, 165–177.

    Article  Google Scholar 

  84. Demjén, Z. (2014). Drowning in negativism, self-hate, doubt, madness: Linguistic insights into Sylvia Plath’s experience of depression. Communication & Medicine, 11(1), 41–54.

    Article  Google Scholar 

  85. Imahori, E. (2018). Linguistic expressions of depressogenic schemata. Applied Linguistics & TESOL, 18(2), 20–32.

    Google Scholar 

  86. Xu, R., & Zhang, Q. (2016). Understanding online health groups for depression: Social network and linguistic perspectives. Journal of Medical Internet Research, 18(3), e63.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 81.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tian, L., Lai, C., & Moore, J. (2018). Polarity and intensity: The two aspects of sentiment analysis.

  89. Inceer, M., Brouillette, M.-J., Fellows, L. K., Morais, J. A., Harris, M., Smaill, F., et al. (2022). Factors partitioning physical frailty in people aging with HIV: A classification and regression tree approach. HIV Medicine, 23(7), 738–749.

    Article  CAS  PubMed  Google Scholar 

  90. Too, E. K., Abubakar, A., Nasambu, C., Koot, H. M., Cuijpers, P., Newton, C. R. J. C., et al. (2021). Prevalence and factors associated with common mental disorders in young people living with HIV in sub-Saharan Africa: A systematic review. Journal of the International AIDS Society, 24(S2), e25705.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, Y., Liu, M., Lu, Q., Farrell, M., Lappin, J. M., Shi, J., et al. (2020). Global prevalence and burden of HIV-associated neurocognitive disorder. A meta-analysis. Neurology, 95(19), e2610–e2621.

    Article  CAS  PubMed  Google Scholar 

  92. Bing, E. G., Burnam, M. A., Longshore, D., Fleishman, J. A., Sherbourne, C. D., London, A. S., et al. (2001). Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Archives of General Psychiatry., 58(8), 721–728.

    Article  CAS  PubMed  Google Scholar 

  93. Ciesla, J. A., & Roberts, J. E. (2001). Meta-analysis of the relationship between HIV infection and risk for depressive disorders. American Journal of Psychiatry., 158(5), 725–730.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the study participants who agreed and took the time to participate in the Positive Brain Health Now (+BHN) cohort. We would also like to thank Susan Scott and Lyne Nadeau for their assistance with database development and management.

Funding

This work was supported by a Canadian Institute of Health Research (CIHR) Team Grant [TCO-125272] and a grant from CIHR HIV Clinical Trials Network (CTN 273). The funders had no role in the data collection, design, analysis and interpretation in this study.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is the work of MMH and is part of his thesis with editing and feedback from Professor. NEM Statistical analysis was also conducted by the masters candidate. As supervisor, Prof. NEM oversaw all aspects of the thesis and provided expertise regarding research methodology. Dr. M-JB and Dr. LKF were the primary investigators of the + BHN study and provided professional feedback as part of the thesis committee.

Corresponding author

Correspondence to Muhammad Mustafa Humayun.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humayun, M.M., Brouillette, MJ., Fellows, L.K. et al. The Patient Generated Index (PGI) as an early-warning system for predicting brain health challenges: a prospective cohort study for people living with Human Immunodeficiency Virus (HIV). Qual Life Res 32, 3439–3452 (2023). https://doi.org/10.1007/s11136-023-03475-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-023-03475-1

Keywords

Navigation