Skip to main content
Log in

Comparing the quantum memory-assisted entropic uncertainties of spin-qubit in presence of spin-qutrit and spin-qubit quantum memories in Heisenberg spin chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum memory-assisted entropic uncertainty relation (QMA-EUR) addresses that the entropic uncertainty of measured particle can be reduced by the aid of another particle acting as quantum memory. Especially, the measurement precision for two incompatible observables can be improved. In this paper, we have studied QMA-EUR in the qubit–qubit and qubit–qubit-spin chain models and examined quantum-memory-assisted entropic uncertainties (QMA-EUs) and their lower bounds (LBs) of the spin-qubit measured subsystem in the case of spin-qutrit and spin-qubit acting as the quantum memories, respectively. The numerical results show that spin-qutrit memory subsystems can effectively suppress the amounts of QMA-EUs and LBs of the spin-qubit measurement subsystem, which indicates that it can broke the limits of entropic uncertainty relationship without quantum memory subsystem. But, the suppression effects are very different in both antiferromagnetic and ferromagnetic spin coupling cases. In general, one can get lower values of QMA-EUs and LBs by adjusting the thermal equilibrium temperature and relevant coupling parameters in the case of antiferromagnetic spin coupling case. Furthermore, we compared the regulation effects of reducing the values of QMA-EUs and LBs when the quantum memory subsystem is severed by spin-qutrit and spin-qubit, respectively, in the same model parameters condition. It is found that effects of spin-qutrit memory subsystem on reducing QMA-EUs and LBs are inferior to that of spin-qubit memory one. This comparative analysis result indicates that the dimensions of quantum measurement subsystem and quantum memory subsystem have a significant effect on the reducing the QMA-EUs and LBs in the entropic uncertainty game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as this paper is a theoretical research and all data generated or analyzed during the current study are included in the manuscript.

References

  1. Heisenberg, W.: Uber den anschaulichen inhalt der quantentheoretischen kinematik and mechanik. Z. Phys. 43, 172198 (1927). https://doi.org/10.1007/BF01397280

    Article  Google Scholar 

  2. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  3. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988). https://doi.org/10.1103/PhysRevLett.60.1103

    Article  ADS  MathSciNet  Google Scholar 

  4. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983). https://doi.org/10.1103/PhysRevLett.50.631

    Article  ADS  MathSciNet  Google Scholar 

  5. Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009). https://doi.org/10.1103/PhysRevLett.103.020402

    Article  ADS  Google Scholar 

  6. Berta, M., Christand, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010). https://doi.org/10.1038/nphys1734

    Article  Google Scholar 

  7. Wang, D., Ming, F., Hu, M.L., Ye, L.: Quantum-memory-assisted entropic uncertainty relations. Ann. Phys. (Berlin) 531(10), 1900124 (2019). https://doi.org/10.1002/andp.201900124

    Article  ADS  MathSciNet  Google Scholar 

  8. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017). https://doi.org/10.1103/RevModPhys.89.015002

    Article  ADS  MathSciNet  Google Scholar 

  9. Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016). https://doi.org/10.1103/PhysRevA.93.062123

    Article  ADS  Google Scholar 

  10. Pati, A.K., Wilde, M.M., Devi, A.R.U., Rajagopal, A.K.: Sudha: ouantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012). https://doi.org/10.1103/PhysRevA.86.042105

    Article  ADS  Google Scholar 

  11. Liu, S., Mu, L.Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015). https://doi.org/10.1103/PhysRevA.91.042133

    Article  ADS  Google Scholar 

  12. Xiao, Y., Jing, N., Fei, S.M., Li, T., Li-Jost, X., Ma, T., Wang, Z.X.: Strong entropic uncertainty relations for multiple measurements. Phys. Rev. A 93, 042125 (2016). https://doi.org/10.1103/PhysRevA.93.042125

    Article  ADS  Google Scholar 

  13. Ming, F., Wang, D., Fan, X.G., Shi, W.N., Ye, L., Chen, J.L.: Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A 102, 012206 (2020). https://doi.org/10.1103/PhysRevA.102.012206

    Article  ADS  MathSciNet  Google Scholar 

  14. Xie, B.F., Ming, F., Wang, D., Ye, L., Chen, J.L.: Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A 104, 062204 (2021). https://doi.org/10.1103/PhysRevA.104.062204

    Article  ADS  MathSciNet  Google Scholar 

  15. Ding, Z.Y., Yang, H., Wang, D., Yuan, H., Yang, J., Ye, L.: Experimental investigation of entropic uncertainty relations and coherence uncertainty relations. Phys. Rev. A 101, 032101 (2020). https://doi.org/10.1103/PhysRevA.101.032101

    Article  ADS  Google Scholar 

  16. Abd-Rabbou, M.Y., Khalil, E.M.: Dense coding and quantum memory assisted entropic uncertainty relations in a two-qubit state influenced by dipole and symmetric cross interactions. Ann. Phys. (Berlin) 534, 2200204 (2022). https://doi.org/10.1002/andp.202200204

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhang, Y.L., Kang, G.D., Yi, S.J., Xu, H.Z., Zhou, Q.P., Fang, M.: Relationship between quantum-memory-assisted entropic uncertainty and steered quantum coherence in a two-qubit X state. Quantum Inf. Process. 22, 114 (2023). https://doi.org/10.1007/s11128-023-03862-0

    Article  ADS  MathSciNet  Google Scholar 

  18. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012). https://doi.org/10.1038/ncomms1631

    Article  ADS  Google Scholar 

  19. Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90, 052327 (2014). https://doi.org/10.1103/PhysRevA.90.052327

    Article  ADS  Google Scholar 

  20. Xiao, L., Liao, B., Jin, J., Lu, R., Yang, X., Ding, L.: A finite-time convergent dynamic system for solving online simultaneous linear equations. Int. J. Comp. Math. 94(9), 1778 (2017). https://doi.org/10.1080/00207160.2016.1247436

    Article  MathSciNet  Google Scholar 

  21. Liu, R.F., Zou, H.M., Yang, J.H., Lin, D.P.: Entanglement witness and entropy uncertainty of an open quantum system under the Zeno effect. J. Opt. Soc. Am. B 38(3), 662 (2021). https://doi.org/10.1364/JOSAB.401094

    Article  ADS  Google Scholar 

  22. Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Ye, L.: Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14(9), 095204 (2017). https://doi.org/10.1088/1612-202X/aa7b4e

    Article  ADS  Google Scholar 

  23. Zheng, X., Zhang, G.F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction. Quantum Inf. Process. 16, 1 (2017). https://doi.org/10.1007/s11128-016-1481-y

    Article  ADS  Google Scholar 

  24. Ming, F., Wang, D., Shi, W.N., Huang, A.J., Sun, W.Y., Ye, L.: Entropic uncertainty relations in the Heisenberg xxz model and its controlling via filtering operations. Quantum Inf. Process. 17, 89 (2018). https://doi.org/10.1007/s11128-018-1857-2

    Article  ADS  MathSciNet  Google Scholar 

  25. Khedif, Y., Haddadi, S., Pourkarimi, M.R., Daoud, M.: Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phy. Lett. A 36, 2150209 (2021). https://doi.org/10.1142/S0217732321502096

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, D., Huang, A.J., Ming, F., Sun, W.Y., Lu, H.P., Liu, C.C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14(6), 065203 (2017). https://doi.org/10.1088/1612-202X/aa6f85

    Article  ADS  Google Scholar 

  27. Cao, Y., Wang, D., Fan, X.G., Ming, F., Wang, Z.Y., Ye, L.: Complementary relation between quantum entanglement and entropic uncertainty. Commun. Theor. Phys. 73(1), 015101 (2020). https://doi.org/10.1088/1572-9494/abc46f

    Article  ADS  MathSciNet  Google Scholar 

  28. Ait Chlih, A., Habiballah, N., Nassik, M.: Exploring the effects of intrinsic decoherence on quantum-memory-assisted entropic uncertainty relation in a Heisenberg spin chain model. Int. J. Theor. Phys. 61, 49 (2022). https://doi.org/10.1007/s10773-022-05001-4

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y.L., Zhou, Q.P., Xu, H.Z., Kang, G.D., Fang, M.F.: Quantum-memory-assisted entropic uncertainty in two-qubit Heisenberg XX spin chain model. Int. J. Theor. Phys. 58, 41944207 (2019). https://doi.org/10.1007/s10773-019-04287-1

    Article  MathSciNet  Google Scholar 

  30. Xiong, S.J., Sun, Z., Liu, J.M.: Entropic uncertainty relation and quantum phase transition in spin-1/2 Heisenberg chain. Laser Phys. Lett. 17(9), 095203 (2020). https://doi.org/10.1088/1612-202X/aba2ef

    Article  ADS  Google Scholar 

  31. Huang, Z.M.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction. Laser Phys. Lett. 15(2), 025203 (2018). https://doi.org/10.1088/1612-202X/aa9aa6

    Article  ADS  Google Scholar 

  32. Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Ye, L.: Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14(9), 095204 (2017). https://doi.org/10.1088/1612-202X/aa7b4e

    Article  ADS  Google Scholar 

  33. Guo, Y.N., Fang, M.F., Zeng, K.: Entropic uncertainty relation in a two qutrit system with external magnetic field and Dzyaloshinskii Moriya interaction under intrinsic decoherence. Quantum Inf. Process. 17, 187 (2018). https://doi.org/10.1007/s11128-018-1945-3

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant No.12064012, No.62062036 and No.11464015, the Natural Science Foundation of Hunan Province under Grant No.2020JJ4496, the Youth Scientific Research Project of Hunan Province Education Department under Grant No.21B0518, the Scientific Project of Jishou University under Grant No. Jd21005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanliang Zhang.

Ethics declarations

Conflict of interest

We declare that all the authors have no conflicts of interest when submitting this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The nonzero elements in Eq.(6)

The nonzero elements of the density matrix of hybrid qubit–qutrit spin chain model in a thermal equilibrium at temperature T in Eq.(6) are given by

$$\begin{aligned} \rho _{11}^{(1)}= & {} \exp {\left( -\frac{E_1^{(1)}}{T}\right) }\nonumber \\ \rho _{22}^{(1)}= & {} |C_{2}|^{2}A_{1}^{2}\exp {\left( -\frac{E_{2}^{(1)}}{T}\right) }+|C_{3}|^{2}B_{1}^{2}\exp {\left( -\frac{E_{3}^{(1)}}{T}\right) }\nonumber \\ \rho _{33}^{(1)}= & {} |C_{4}|^{2}A_{2}^{2}\exp {\left( -\frac{E_{4}^{(1)}}{T}\right) }+|C_{5}|^{2}B_{2}^{2}\exp {\left( -\frac{E_{5}^{(1)}}{T}\right) }\nonumber \\ \rho _{44}^{(1)}= & {} |C_{2}|^{2}\exp {\left( -\frac{E_{2}^{(1)}}{T}\right) }+|C_{3}|^{2}\exp {\left( -\frac{E_{3}^{(1)}}{T}\right) }\nonumber \\ \rho _{55}^{(1)}= & {} |C_{4}|^{2}\exp {\left( -\frac{E_{4}^{(1)}}{T}\right) }+|C_{5}|^{2}\exp {\left( -\frac{E_{5}^{(1)}}{T}\right) }\nonumber \\ \rho _{66}^{(1)}= & {} \exp {\left( -\frac{E_6}{T}\right) }\nonumber \\ \rho _{24}^{(1)}= & {} |C_{2}|^{2}A_{1}\exp {\left( i\theta -\frac{E_{2}^{(1)}}{T}\right) }+|C_{3}|^{2}B_{1}\exp {\left( i\theta -\frac{E_{3}^{(1)}}{T}\right) }\nonumber \\ \rho _{35}^{(1)}= & {} |C_{4}|^{2}A_{2}\exp {\left( i\theta -\frac{E_{4}^{(1)}}{T}\right) }+|C_{5}|^{2}B_{2}\exp {\left( i\theta -\frac{E_{5}^{(1)}}{T}\right) }\nonumber \\ \rho _{42}^{(1)}= & {} \rho _{24}^{*},~~~\rho _{53}=\rho _{35}^{*} \end{aligned}$$
(20)

The partition function Z is obtained by summing the diagonal elements as \(Z=\rho _{11}^{(1)}+\rho _{22}^{(1)}+\rho _{33}^{(1)}+\rho _{44}^{(1)}+\rho _{55}^{(1)}+\rho _{66}^{(1)}\), and some symbols are given by

$$\begin{aligned} A_{1}= & {} \frac{\sin \theta _{1}+1}{\cos \theta _{1}},~~~B_{1}=\frac{\sin \theta _{1}-1}{\cos \theta _{1}}\nonumber \\ A_{2}= & {} \frac{\sin \theta _{2}+1}{\cos \theta _{2}},~~~B_{2}=\frac{\sin \theta _{2}-1}{\cos \theta _{2}} \end{aligned}$$
(21)

\(C_{2}\), \(C_{3}\), \(C_{4}\), \(C_{5}\) are the normalization coefficients for quantum states of \(|\psi _{2}\rangle \), \(|\psi _{3}\rangle \), \(|\psi _{4}\rangle \), \(|\psi _{5}\rangle \) (the normalization coefficients for \(|\psi _{1}\rangle \), \(|\psi _{6}\rangle \) are equal to 1), which are given by

$$\begin{aligned} C_{2}= & {} \frac{2\sqrt{MN}}{\sqrt{(B-3b+\kappa {J}+\varLambda ^{-})^2+4MN}}\nonumber \\ C_{3}= & {} \frac{2\sqrt{MN}}{\sqrt{(B-3b+\kappa {J}-\varLambda ^{-})^2+4MN}}\nonumber \\ C_{4}= & {} \frac{2\sqrt{MN}}{\sqrt{(B-3b-\kappa {J}+\varLambda ^{+})^2+4MN}}\nonumber \\ C_{5}= & {} \frac{2\sqrt{MN}}{\sqrt{(B-3b-\kappa {J}-\varLambda ^{+})^2+4MN}} \end{aligned}$$
(22)

and

$$\begin{aligned} \theta _{1}= & {} \arctan \frac{B-3b+\kappa {J}}{2\sqrt{MN}},~~~\theta _{2}=\arctan \frac{B-3b-\kappa {J}}{2\sqrt{MN}}\nonumber \\ \theta= & {} \arctan \frac{D_{z}}{J} \end{aligned}$$
(23)

\(E_{i}^{(1)}\) \((i=1,2,3,4,5,6)\) are eigenenergies of \(H_{AB}^{(1)}\) in Eq.(2), which are given by

$$\begin{aligned} E_{1}= & {} \kappa {J}+2B,\nonumber \\ E_{2}= & {} \frac{B+b-\kappa {J}+\varLambda ^{+}}{2},~~~~~E_{3}=\frac{B+b-\kappa {J}-\varLambda ^{+}}{2}\nonumber \\ E_{4}= & {} \frac{-B-b-\kappa {J}+\varLambda ^{-}}{2},~~~E_{5}=\frac{-B-b-\kappa {J}-\varLambda ^{-}}{2}\nonumber \\ E_{6}= & {} \kappa {J}-2B \end{aligned}$$
(24)

with

$$\begin{aligned} \varLambda ^{\pm }=\sqrt{\left( B-3b\pm \kappa {J}\right) ^2+4MN} \end{aligned}$$
(25)

and \(M=\sqrt{2}(J+iD_{z})\) and \(N=M^*=\sqrt{2}(J-iD_{z})\).

Appendix B: The nonzero elements in Eq.(8)

The nonzero elements of the density matrix of qubit–qubit-spin chain model in a thermal equilibrium at temperature T in Eq.(8) are given by

$$\begin{aligned} \rho _{11}^{(2)}= & {} \exp {\left( -\frac{E_1^{(2)}}{T}\right) },~~~~~\rho _{44}=\exp {\left( -\frac{E_4^{(2)}}{T}\right) }\nonumber \\ \rho _{22}^{(2)}= & {} C_{0}^2A_{0}^{2}\exp {\left( -\frac{E_{2}^{(2)}}{T}\right) }+C_{0}^2B_{0}^{2}\exp {\left( -\frac{E_{3}^{(2)}}{T}\right) }\nonumber \\ \rho _{33}^{(2)}= & {} C_{0}^2A_{0}^{2}\exp {\left( -\frac{E_{3}^{(2)}}{T}\right) }+C_{0}^2B_{0}^{2}\exp {\left( -\frac{E_{2}^{(2)}}{T}\right) }\nonumber \\ \rho _{23}^{(2)}= & {} C_{0}\exp {\left( i\theta -\frac{E_{3}^{(2)}}{T}\right) }-C_{0}\exp {\left( i\theta -\frac{E_{2}^{(2)}}{T}\right) }\nonumber \\ \rho _{23}^{(2)}= & {} C_{0}\exp {\left( -i\theta -\frac{E_{3}^{(2)}}{T}\right) }-C_{0}\exp {\left( -i\theta -\frac{E_{2}^{(2)}}{T}\right) } \end{aligned}$$
(26)

with

$$\begin{aligned} C_{0}= & {} \frac{1}{2}\left( {\sqrt{J^2+D_{z}^{2}}}/{\sqrt{b^2+J^2+D_{z}^{2}}}\right) \end{aligned}$$
(27)
$$\begin{aligned} A_{0}= & {} \frac{\sin \theta _{1}+1}{\cos \theta _{1}},~~~B_{0}=\frac{\sin \theta _{0}-1}{\cos \theta _{1}} \end{aligned}$$
(28)
$$\begin{aligned} \theta _{0}= & {} \arctan \frac{b}{\sqrt{(J+iD_{z})(J-iD_{z})}},~~~~~\theta =\arctan \frac{D_{z}}{J} \end{aligned}$$
(29)

\(E_{i}^{(2)}\) \((i=1,2,3,4)\) are eigenenergies of \(H_{AB}^{(2)}\) in Eq.(5), which are given by

$$\begin{aligned} E_{1}^{(2)}= & {} +\kappa {J}+2B,~~~E_{2}^{(2)}=-\kappa {J}-2G\nonumber \\ E_{3}^{(2)}= & {} -\kappa {J}+2G,~~~E_{4}^{(2)}=+\kappa {J}-2B \end{aligned}$$
(30)

with

$$\begin{aligned} G=\sqrt{b^2+D_{z}^{z}+J^{2}} \end{aligned}$$
(31)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, Q., Xu, H. et al. Comparing the quantum memory-assisted entropic uncertainties of spin-qubit in presence of spin-qutrit and spin-qubit quantum memories in Heisenberg spin chains. Quantum Inf Process 22, 432 (2023). https://doi.org/10.1007/s11128-023-04193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04193-w

Keywords

Navigation