Skip to main content
Log in

Experimental quantum state transfer of an arbitrary single-qubit state on a cycle with four vertices using a coined quantum random walk

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We experimentally demonstrate the transfer of an unknown single-qubit state from Alice to Bob via a two-step discrete-time quantum random walk on a cycle with four vertices on a four-qubit nuclear magnetic resonance quantum processor. The qubits with Alice and Bob are used as coin qubits and the walk is carried out on in a two-qubit ‘Gaming Arena’. In this scheme, the required entangled state is generated naturally via conditional shift operators during the quantum walk, instead of being prepared in advance. We implement controlled operators at Bob’s end, which are controlled by Alice’s coin qubit and arena qubits, in order to reconstruct Alice’s randomly generated state at Bob’s end. To characterize the state transfer process, we perform quantum process tomography by repeating the experiment for a set of input states \(\{ \vert 0\rangle , \vert 1\rangle , \vert +\rangle , \vert -\rangle \}\). Using an entanglement witness, we certify that the quantum walk generates a genuine quadripartite entangled state of all four qubits. To evaluate the efficacy of the transfer scheme, we use quantum state tomography to reconstruct the transferred state by calculating the projection of the experimentally reconstructed four-qubit density matrix onto three-qubit basis states. Our results demonstrate that the quantum circuit is able to perform quantum state transfer via the two-step quantum random walk with high fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009). https://doi.org/10.1103/PhysRevLett.102.180501

    Article  MathSciNet  ADS  Google Scholar 

  2. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003). https://doi.org/10.1103/PhysRevA.67.052307

    Article  ADS  Google Scholar 

  3. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11(3), 033003 (2009). https://doi.org/10.1088/1367-2630/11/3/033003

    Article  ADS  Google Scholar 

  4. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507 (2003). https://doi.org/10.1142/S0219749903000383

    Article  MATH  Google Scholar 

  5. Kendon, V.M.: A random walk approach to quantum algorithms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1849), 3407 (2006). https://doi.org/10.1098/rsta.2006.1901

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quant. Inf. Proc. 11(5), 1015 (2012). https://doi.org/10.1007/s11128-012-0432-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67, 042316 (2003). https://doi.org/10.1103/PhysRevA.67.042316

    Article  ADS  Google Scholar 

  8. Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005). https://doi.org/10.1103/PhysRevA.72.062317

    Article  ADS  Google Scholar 

  9. Lu, D., Zhu, J., Zou, P., Peng, X., Yu, Y., Zhang, S., Chen, Q., Du, J.: Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins. Phys. Rev. A 81, 022308 (2010). https://doi.org/10.1103/PhysRevA.81.022308

    Article  ADS  Google Scholar 

  10. Xue, P., Sanders, B.C., Leibfried, D.: Quantum walk on a line for a trapped ion. Phys. Rev. Lett. 103, 183602 (2009). https://doi.org/10.1103/PhysRevLett.103.183602

    Article  ADS  Google Scholar 

  11. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010). https://doi.org/10.1103/PhysRevLett.104.100503

    Article  ADS  Google Scholar 

  12. Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110, 190601 (2013). https://doi.org/10.1103/PhysRevLett.110.190601

    Article  ADS  Google Scholar 

  13. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010). https://doi.org/10.1103/PhysRevLett.104.153602

    Article  ADS  Google Scholar 

  14. Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329(5998), 1500 (2010). https://doi.org/10.1126/science.1193515

    Article  ADS  Google Scholar 

  15. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998). https://doi.org/10.1103/PhysRevLett.81.5932

    Article  ADS  Google Scholar 

  17. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402(6760), 390 (1999). https://doi.org/10.1038/46503

    Article  ADS  Google Scholar 

  18. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997). https://doi.org/10.1038/37539

    Article  MATH  ADS  Google Scholar 

  19. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429(6993), 737 (2004). https://doi.org/10.1038/nature02608

    Article  ADS  Google Scholar 

  20. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4(6), 376 (2010). https://doi.org/10.1038/nphoton.2010.87

    Article  ADS  Google Scholar 

  21. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396(6706), 52 (1998). https://doi.org/10.1038/23891

    Article  ADS  Google Scholar 

  22. Baur, M., Fedorov, A., Steffen, L., Filipp, S., da Silva, M.P., Wallraff, A.: Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness. Phys. Rev. Lett. 108, 040502 (2012). https://doi.org/10.1103/PhysRevLett.108.040502

    Article  ADS  Google Scholar 

  23. Pfaff, W., Hensen, B.J., Bernien, H., van Dam, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., Schouten, R.N., Markham, M., Twitchen, D.J., Hanson, R.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345(6196), 532 (2014). https://doi.org/10.1126/science.1253512

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quant. Inf. Proc. 16(9), 221 (2017). https://doi.org/10.1007/s11128-017-1675-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, H.J., Chen, X.B., Wang, Y.L., Hou, Y.Y., Li, J.: A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quant. Inf. Process. 18(9), 266 (2019). https://doi.org/10.1007/s11128-019-2374-7

    Article  MATH  ADS  Google Scholar 

  26. Yamagami, T., Segawa, E., Konno, N.: General condition of quantum teleportation by one-dimensional quantum walks. Quant. Inf. Process. 20(7), 224 (2021). https://doi.org/10.1007/s11128-021-03155-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Li, H.J., Li, J., Chen, X.: Generalized quantum teleportation of shared quantum secret: a coined quantum-walk approach. Quant. Inf. Process. 21(12), 387 (2022). https://doi.org/10.1007/s11128-022-03741-0

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Shi, W.M., Bai, M.X., Zhou, Y.H., Yang, Y.G.: Controlled quantum teleportation based on quantum walks. Quant. Inf. Process. 22(1), 34 (2022). https://doi.org/10.1007/s11128-022-03737-w

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Chatterjee, Y., Devrari, V., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation using coined quantum walks. Quant. Inf. Proc. 19(1), 31 (2019). https://doi.org/10.1007/s11128-019-2527-8

    Article  Google Scholar 

  30. Rajiuddin, S., Baishya, A., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum teleportation of an arbitrary two-qubit state using a four-qubit cluster state. Quant. Inf. Process. 19(3), 87 (2020). https://doi.org/10.1007/s11128-020-2586-x

    Article  ADS  Google Scholar 

  31. Liu, X.F., Li, D.F., Zheng, Y.D., Yang, X.L., Zhou, J., Tan, Y.Q., Liu, M.Z.: Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state. Chin. Phys. B 31(5), 050301 (2022). https://doi.org/10.1088/1674-1056/ac43b0

    Article  ADS  Google Scholar 

  32. Shang, Y., Li, M.: Experimental realization of state transfer by quantum walks with two coins. Quant. Sci. Technol. 5(1), 015005 (2019). https://doi.org/10.1088/2058-9565/ab6025

    Article  ADS  Google Scholar 

  33. Tokunaga, Y., Yamamoto, T., Koashi, M., Imoto, N.: Fidelity estimation and entanglement verification for experimentally produced four-qubit cluster states. Phys. Rev. A 74, 020301 (2006). https://doi.org/10.1103/PhysRevA.74.020301

    Article  ADS  Google Scholar 

  34. Oliveira, I.S., Bonagamba, T.J. , Sarthour, R.S., Freitas, J.C.C., deAzevedo, E.R.: NMR Quantum Information Processing. Elsevier, Amsterdam (2007). https://doi.org/10.1016/B978-044452782-0/50006-3

  35. Singh, A., Dorai, K., Arvind: Experimentally identifying the entanglement class of pure tripartite states. Quant. Inf. Process. 17(12), 334 (2018). https://doi.org/10.1007/s11128-018-2105-5

  36. Bhole, G.: Coherent Control for Quantum Information Processing. Ph.D. thesis, Oxford University Press (2020)

  37. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296 (2005). https://doi.org/10.1016/j.jmr.2004.11.004

    Article  ADS  Google Scholar 

  38. Ryan, C.A., Negrevergne, C., Laforest, M., Knill, E., Laflamme, R.: Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods. Phys. Rev. A 78, 012328 (2008). https://doi.org/10.1103/PhysRevA.78.012328

    Article  ADS  Google Scholar 

  39. Tosner, Z., Vosegaard, T., Kehlet, C., Khaneja, N., Glaser, S.J., Nielsen, N.C.: Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. J. Magn. Resonan. 197(2), 120 (2009). https://doi.org/10.1016/j.jmr.2008.11.020

    Article  ADS  Google Scholar 

  40. Zhang, Y., Lapert, M., Sugny, D., Braun, M., Glaser, S.J.: Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation. J. Chem. Phys. 134(5), 054103 (2011). https://doi.org/10.1063/1.3543796

    Article  ADS  Google Scholar 

  41. Garon, A., Glaser, S.J., Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422 (2013). https://doi.org/10.1103/PhysRevA.88.043422

    Article  ADS  Google Scholar 

  42. Petruhanov, V.N., Pechen, A.N.: GRAPE optimization for open quantum systems with time-dependent decoherence rates driven by coherent and incoherent controls. J. Phys. A Math. Theor. 56(30), 305303 (2023). https://doi.org/10.1088/1751-8121/ace13f

    Article  MathSciNet  MATH  Google Scholar 

  43. Gaikwad, A., Arvind, Dorai, K.: True experimental reconstruction of quantum states and processes via convex optimization. Quant. Inf. Proc. (2021). https://doi.org/10.1007/s11128-020-02930-z

  44. Gaikwad, A., Shende, K., Arvind, K. Dorai.: Implementing efficient selective quantum process tomography of superconducting quantum gates on IBM quantum experience. Sci. Rep. 12(1), 3688 (2022). https://doi.org/10.1038/s41598-022-07721-3

    Article  ADS  Google Scholar 

  45. Li, J., Huang, S., Luo, Z., Li, K., Lu, D., Zeng, B.: Optimal design of measurement settings for quantum state tomography experiments. Phys. Rev. A 96, 032307 (2017). https://doi.org/10.1103/PhysRevA.96.032307

    Article  ADS  Google Scholar 

  46. Singh, H., Arvind, K. Dorai.: Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation. Phys. Lett. A 380(38), 3051 (2016). https://doi.org/10.1016/j.physleta.2016.07.046

    Article  MathSciNet  ADS  Google Scholar 

  47. Singh, H., Arvind, K. Dorai.: Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 97, 022302 (2018). https://doi.org/10.1103/PhysRevA.97.022302

    Article  ADS  Google Scholar 

  48. Wang, X., Yu, C.S., Yi, X.: An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 373(1), 58 (2008). https://doi.org/10.1016/j.physleta.2008.10.083

    Article  MATH  ADS  Google Scholar 

  49. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315 (1994). https://doi.org/10.1080/09500349414552171

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Liang, Y.C., Yeh, Y.H., Mendonça, P.E.M.F., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019). https://doi.org/10.1088/1361-6633/ab1ca4

    Article  MathSciNet  ADS  Google Scholar 

  51. Dogra, S., Dorai, A., Dorai, K.: Implementation of the quantum Fourier transform on a hybrid qubit-qutrit NMR quantum emulator. Int. J. Quant. Inf. 13(07), 1550059 (2015). https://doi.org/10.1142/S0219749915500598

    Article  MathSciNet  MATH  Google Scholar 

  52. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  MATH  ADS  Google Scholar 

  53. Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008). https://doi.org/10.1103/PhysRevA.78.062333

    Article  ADS  Google Scholar 

  54. Gaikwad, A., Rehal, D., Singh, A., Arvind, K. Dorai.: Experimental demonstration of selective quantum process tomography on an NMR quantum information processor. Phys. Rev. A 97, 022311 (2018). https://doi.org/10.1103/PhysRevA.97.022311

    Article  ADS  Google Scholar 

  55. Gaikwad, A., Arvind, K. Dorai.: Efficient experimental characterization of quantum processes via compressed sensing on an NMR quantum processor. Quant. Inf. Proc. 21(12), 388 (2022). https://doi.org/10.1007/s11128-022-03695-3

    Article  Google Scholar 

  56. Mallet, F., Ong, F.R., Palacios-Laloy, A., Nguyen, F., Bertet, P., Vion, D., Esteve, D.: Single-shot qubit readout in circuit quantum electrodynamics. Nat. Phys. 5(11), 791 (2009). https://doi.org/10.1038/nphys1400

    Article  Google Scholar 

  57. Doherty, A.C., Jacobs, K.: Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60, 2700 (1999). https://doi.org/10.1103/PhysRevA.60.2700

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All experiments were performed on a Bruker Avance-III 600 MHz FT-NMR spectrometer at the NMR Research Facility at IISER Mohali. Arvind acknowledges funding from the Department of Science and Technology (DST), India, Grant No: DST/ICPS/QuST/Theme-1/2019/Q-68. K.D. acknowledges funding from the Department of Science and Technology (DST), India, Grant No:DST/ICPS/QuST/Theme-2/2019/Q-74. G.S. acknowledges University Grants Commission (UGC), India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Dorai.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Dorai, K. & Arvind Experimental quantum state transfer of an arbitrary single-qubit state on a cycle with four vertices using a coined quantum random walk. Quantum Inf Process 22, 394 (2023). https://doi.org/10.1007/s11128-023-04150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04150-7

Keywords

Navigation