Skip to main content
Log in

Quantum Fisher information matrix in Heisenberg XY model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum Fisher information matrix provides us with a tool to determine the precision, in any multiparametric estimation protocol, through quantum Cramér–Rao bound. In this work, we study simultaneous and individual estimation strategies using the density matrix vectorization method. Two special Heisenberg XY models are considered. The first one concerns the anisotropic XY model in which the temperature T and the anisotropic parameter \(\gamma \) are estimated. The second situation concerns the isotropic XY model submitted to an external magnetic field B in which the temperature and the magnetic field are estimated. Our results show that the simultaneous strategy of multiple parameters is always advantageous and can provide a better precision than the individual strategy in the multiparameter estimation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  3. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, Cambridge (1976)

    MATH  Google Scholar 

  4. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997)

    Article  ADS  Google Scholar 

  5. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Article  Google Scholar 

  6. Joza, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85, 2010 (2000)

    Article  ADS  Google Scholar 

  7. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ballester, M.A.: Entanglement is not very useful for estimating multiple phases. Phys. Rev. A 70, 032310 (2004)

    Article  ADS  Google Scholar 

  9. Monras, A.: Optimal phase measurements with pure Gaussian states. Phys. Rev. A 73, 033821 (2006)

    Article  ADS  Google Scholar 

  10. Aspachs, M., Calsamiglia, J., Muñoz Tapia, R., Bagan, E.: Phase estimation for thermal Gaussian states. Phys. Rev. A 79, 033834 (2009)

    Article  ADS  Google Scholar 

  11. Nation, P.D., Blencowe, M.P., Rimberg, A.J., Buks, E.: Analogue Hawking radiation in a dc-SQUID array transmission line. Phys. Rev. Lett. 103, 087004 (2009)

    Article  ADS  Google Scholar 

  12. Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A.: Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011)

    Article  ADS  Google Scholar 

  13. Aspachs, M., Adesso, G., Fuentes, I.: Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 105, 151301 (2010)

    Article  ADS  Google Scholar 

  14. Wasilewski, W., Jensen, K., Krauter, H., Renema, J.J., Balabas, M.V., Polzik, E.S.: Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010)

    Article  ADS  Google Scholar 

  15. Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)

    Article  ADS  Google Scholar 

  16. Monras, A., Illuminati, F.: Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels. Phys. Rev. A 83, 012315 (2011)

    Article  ADS  Google Scholar 

  17. Correa, L.A., Mehboudi, M., Adesso, G., Sanpera, A.: Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 114, 220405 (2015)

    Article  ADS  Google Scholar 

  18. Boss, J., Cujia, K., Zopes, J., Degen, C.: Quantum sensing with arbitrary frequency resolution. Science 356, 837 (2017)

    Article  ADS  Google Scholar 

  19. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  20. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  22. Giorda, P., Paris, M.G.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  23. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  24. Mancino, L., Cavina, V., De Pasquale, A., Sbroscia, M., Booth, R.I., Roccia, E., Gianani, I., Giovannetti , V., Barbieri, M.: Geometrical bounds on irreversibility in open quantum systems. arXiv:1801.05188

  25. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 07, 125 (2009)

    Article  Google Scholar 

  26. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  28. Holevo, A.S.: Statistical Structure of Quantum Theory, Lecture Notes in Physics, vol. 61. Springer, Berlin (2001)

    Book  Google Scholar 

  29. Genoni, M.G., Paris, M.G.A., Adesso, G., Nha, H., Knight, P.L., Kim, M.S.: Optimal estimation of joint parameters in phase space. Phys. Rev. A 87, 012107 (2013)

    Article  ADS  Google Scholar 

  30. Humphreys, P.C., Barbieri, M., Datta, A., Walmsley, I.A.: Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403 (2013)

    Article  ADS  Google Scholar 

  31. Yuan, H., Fung, C.H.F.: Fidelity and Fisher information on quantum channels. New J. Phys. 19, 113039 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu, J., Jing, X., Wang, X.: Phase-matching condition for enhancement of phase sensitivity in quantum metrology. Phys. Rev. A 88, 042316 (2013)

    Article  ADS  Google Scholar 

  33. Yuen, H., Lax, M.: Multiple-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theory 19, 740 (1973)

    Article  MathSciNet  Google Scholar 

  34. Matsumoto, K.: When is an input state always better than the others?: Universally optimal input states for statistical inference of quantum channels (2012). arXiv:1209.2392

  35. Řháček, J., Hradil, Z., Koutný, D., Grover, J., Krzic, A., Sánchez-Soto, L.L.: Optimal measurements for quantum spatial superresolution. Phy. Rev. A 98, 012103 (2018)

    Article  ADS  Google Scholar 

  36. Ragy, S., Jarzyna, M., Demkowicz-Dobrzański, R.: Compatibility in multiparameter quantum metrology. Phys. Rev. A 94, 052108 (2016)

    Article  ADS  Google Scholar 

  37. Spagnolo, N., Aparo, L., Vitelli, C., Crespi, A., Ramponi, R., Osellame, R., Mataloni, P., Sciarrino, F.: Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862 (2012)

    Article  ADS  Google Scholar 

  38. Zhang, L., Chan, K.W.C.: Quantum multiparameter estimation with generalized balanced multimode NOON-like states. Phys. Rev. A 95, 032321 (2017)

    Article  ADS  Google Scholar 

  39. Cheng, J.: Quantum metrology for simultaneously estimating the linear and nonlinear phase shifts. Phys. Rev. A 90, 063838 (2014)

    Article  ADS  Google Scholar 

  40. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Rivas, Á., Luis, A.: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010)

    Article  ADS  Google Scholar 

  42. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  43. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  44. Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  45. Gilchrist, A., Terno, D.R., Wood, C.J.: Vectorization of quantum operations and its use. arXiv:0911.2539

  46. Schacke, K.: On the Kronecker product. Master’s thesis, University of Waterloo (2004)

  47. Banchi, L., Giorda, P., Zanardi, P.: Quantum information-geometry of dissipative quantum phase transitions. Phys. Rev. E 89, 022102 (2014)

    Article  ADS  Google Scholar 

  48. Sommers, H.J., Zyczkowski, K.: Bures volume of the set of mixed quantum states. J. Phys. A 36, 10083 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  49. Šafránek, D.: Simple expression for the quantum Fisher information matrix. Phys. Rev. A. 97, 042322 (2018)

    Article  ADS  Google Scholar 

  50. Matsumoto, K.: A new approach to the Cramér–Rao-type bound of the pure-state model. J. Phys. A Math. Gen. 35, 3111 (2002)

    Article  ADS  Google Scholar 

  51. Crowley, P.J., Datta, A., Barbieri, M., Walmsley, I.A.: Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry. Phys. Rev. A. 89, 023845 (2014)

    Article  ADS  Google Scholar 

  52. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions, pp. 63–79. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  53. Wang, X., Zanardi, P.: Quantum entanglement and Bell inequalities in Heisenberg spin chains. Phys. Lett. A 301, 1–6 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg \(XY\) chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  55. Ha, Z.N.C.: Quantum Many-Body Systems in One Dimension. World Scientific, Singapore (1996)

    Book  Google Scholar 

  56. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339 (2000)

    Article  ADS  Google Scholar 

  57. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  58. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  59. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  60. Ye, E.J., Hu, Z.D., Wu, W.: Scaling of quantum Fisher information close to the quantum phase transition in the XY spin chain. Phys. B Condens. Matter 502, 151–154 (2016)

    Article  ADS  Google Scholar 

  61. Prussing, J.E.: The principal minor test for semidefinite matrices. J. Guidance Control Dyn. 9, 121–122 (1986)

    Article  ADS  Google Scholar 

  62. Slaoui, A., Daoud, M., Ahl Laamar, R.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit \(X\) states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  63. Slaoui, A., Shaukat, M.I., Daoud, M., Ahl Laamara, R.: Universal evolution of non-classical correlations due to collective spontaneous emission. Eur. Phys. J. Plus 133, 413 (2018)

    Article  Google Scholar 

  64. Kim, S., Li, L., Kumar, A., Wu, J.: Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97, 032326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  65. Krishnamoorthy, A., Menon, D.: Matrix inversion using Cholesky decomposition. In: SPA, pp. 70–72. IEEE (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Slaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakmou, L., Slaoui, A., Daoud, M. et al. Quantum Fisher information matrix in Heisenberg XY model. Quantum Inf Process 18, 163 (2019). https://doi.org/10.1007/s11128-019-2282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2282-x

Keywords

Navigation