Skip to main content
Log in

Estimating canopy chlorophyll in slash pine using multitemporal vegetation indices from uncrewed aerial vehicles (UAVs)

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Canopy Chlorophyll Content (CCC) is an important physiological indicator that reflects the growth stage of trees. Accurate estimation of CCC facilitates dynamic monitoring and efficient forest management. In this study, we used high-resolution remote sensing images obtained by uncrewed aerial vehicles (UAVs) equipped with multispectral sensors (red, green, blue, near-infrared, and red-edge) to estimate CCC of lodgepole pine (Pinus elliottii). Our aim was to determine the optimal machine learning model between support vector regression (SVR) and random forest regression (RFR) for predicting CCC and to evaluate the effectiveness of multispectral bands along with 21 vegetation indices (VIs) in the estimation process. Individual tree boundaries were derived from the canopy height model (CHM) based on three-dimensional (3D) point clouds generated using structure from motion. These images, combined with continuous field measurements from January to December, provided comprehensive data for our analysis. The results showed that the SVR method outperformed the RFR method in estimating leaf chlorophyll content (LCC), with fitting R2 values up to 0.692 and RMSE values up to 0.168 mg⋅g−1. Overall, the study highlights the potential of UAV-based remote sensing for multitemporal forest monitoring, offering advances in precision forestry and tree breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used for this paper is freely available upon permission of Research Institute of Subtropical Forestry, Chinese Academy of Forestry.

References

  • Awad, M., Khanna, R., Awad, M., & Khanna, R. (2015). Support vector regression. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. https://doi.org/10.1007/978-1-4302-5990-9

    Article  Google Scholar 

  • Barzin, R., Kamangir, H., & Bora, G. C. (2021). Comparison of machine learning methods for leaf nitrogen estimation in corn using multispectral UAV images. Transactions of the ASABE, 64, 2089–2101.

    Article  Google Scholar 

  • Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58, 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Breiman, L. I., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2015). Classification and regression trees. Encyclopedia of Ecology, 57, 582–588.

    Google Scholar 

  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  ADS  Google Scholar 

  • Card, D. H., Peterson, D. L., Matson, P. A., & Aber, J. D. (1988). Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment, 26, 123–147.

    Article  ADS  Google Scholar 

  • Chen, B., Wang, L., Fan, X., Bo, W., Yang, X., & Tjahjadi, T. (2023). Semi-FCMNet: Semi-supervised learning for forest cover mapping from satellite imagery via ensemble self-training and perturbation. Remote Sensing, 15, 4012.

    Article  ADS  Google Scholar 

  • Chen, J. M., & Black, T. A. (1992). Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, 60, 249–266.

    Article  ADS  Google Scholar 

  • Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using landsat TM images. Remote Sensing of Environment, 55, 153–162.

    Article  ADS  Google Scholar 

  • Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., & Plummer, S. (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research Atmospheres, 102, 29429–29443.

    Article  Google Scholar 

  • Chen, Q., Zheng, B., Chenu, K., Hu, P., & Chapman, S. C. (2022). Unsupervised plot-scale LAI phenotyping via UAV-based imaging, modelling, and machine learning. Plant Phenomics. https://doi.org/10.34133/2022/9768253

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciganda, V., Gitelson, A., & Schepers, J. (2009). Non-destructive determination of maize leaf and canopy chlorophyll content. Journal of Plant Physiology, 166, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Clevers, J. (2012). Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 574–583.

    Article  ADS  Google Scholar 

  • Croft, H., Chen, J., & Zhang, Y. (2014). The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecological Complexity, 17, 119–130.

    Article  Google Scholar 

  • Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30, 271–278.

    Article  ADS  Google Scholar 

  • Curran, P. J., Dungan, J. L., & Gholz, H. L. (1992a). Seasonal LAI in slash pine estimated with Landsat TM. Remote Sensing of Environment, 39, 3–13.

    Article  ADS  Google Scholar 

  • Curran, P. J., Dungan, J. L., Macler, B. A., Plummer, S. E., & Peterson, D. L. (1992b). Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 39, 153–166.

    Article  ADS  Google Scholar 

  • Cutler, A., Cutler, D. R., & Stevens, J. R. (2004). Random forests. Machine Learning, 45, 157–176.

    Google Scholar 

  • Gao, D., Qiao, L., An, L., Zhao, R., Sun, H., Li, M., Tang, W., & Wang, N. (2022). Estimation of spectral responses and chlorophyll based on growth stage effects explored by machine learning methods. The Crop Journal, 10, 1292–1302.

    Article  Google Scholar 

  • Garcia-Gutierrez, J., Martínez-Álvarez, F., Troncoso, A., & Riquelme, J.C. (2014). A comparative study of machine learning regression methods on LiDAR data: A case study. In, International Joint Conference SOCO’13-CISIS’13-ICEUTE’13 (pp. 249–258): Springer

  • Gholz, H., Vogel, S., Cropper, W., Jr., McKelvey, K., Ewel, K., Teskey, R., & Curran, P. (1991). Dynamics of canopy structure and light interception in Pinus elliottii stands, North Florida. Ecological Monographs, 61, 33–51.

    Article  Google Scholar 

  • Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Article  ADS  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691–2697.

    Article  ADS  Google Scholar 

  • Gitelson, A. A., Peng, Y., Arkebauer, T. J., & Schepers, J. (2014). Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 144, 65–72.

    Article  ADS  Google Scholar 

  • Gitelson, A. A., Viña, A., Verma, S. B., Rundquist, D. C., Arkebauer, T. J., Keydan, G., Leavitt, B., Ciganda, V., Burba, G. G., & Suyker, A. E. (2006). Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2005JD006017

    Article  Google Scholar 

  • Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8, 2136–2160.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., & Cai, J. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.

    Article  ADS  Google Scholar 

  • Gupana, R. S., Odermatt, D., Cesana, I., Giardino, C., Nedbal, L., & Damm, A. (2021). Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects. Remote Sensing of Environment, 262, 112482.

    Article  Google Scholar 

  • Haboudane, D., Tremblay, N., Miller, J. R., & Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience & Remote Sensing, 46, 423–437.

    Article  ADS  Google Scholar 

  • Hakala, T., Nevalainen, O., Kaasalainen, S., & Mäkipää, R. (2015). Multispectral lidar time series of pine canopy chlorophyll content. Biogeosciences, 12, 1629–1634.

    Article  ADS  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009). Random forests. The elements of statistical learning: Data mining, inference, and prediction (pp. 587–604). Springer.

    Google Scholar 

  • Houborg, R., Anderson, M., & Daughtry, C. (2009). Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sensing of Environment, 113, 259–274.

    Article  ADS  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

    Article  ADS  Google Scholar 

  • Hunt, E. R., Jr., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal, 103, 1090–1099.

    Article  Google Scholar 

  • Iiames, J., Congalton, R. G., Pilant, A. N., & Lewis, T. E. (2008). Leaf area index (LAI) change detection analysis on Loblolly pine (Pinus taeda) following complete understory removal. Photogrammetric Engineering & Remote Sensing, 74, 1389–1400.

    Article  Google Scholar 

  • Jiang, J., Atkinson, P. M., Zhang, J., Lu, R., Zhou, Y., Cao, Q., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2022). Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. European Journal of Agronomy, 138, 126537.

    Article  CAS  Google Scholar 

  • Jiao, Q., Zhang, B., Huang, W., Ye, H., Zhang, Z., Qian, B., Hu, B., & Wang, S. (2023). The Potential of hue angle calculated based on multispectral reflectance for leaf chlorophyll content estimation. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3322130

    Article  Google Scholar 

  • Katahata, S.-I., Naramoto, M., Kakubari, Y., & Mukai, Y. (2007). Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees, 21, 619.

    Article  CAS  Google Scholar 

  • Ke, Y., & Quackenbush, L. J. (2011). A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. International Journal of Remote Sensing, 32, 4725–4747.

    Article  ADS  Google Scholar 

  • Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E., & Wessman, C. A. (2009). Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 113, S78–S91.

    Article  ADS  Google Scholar 

  • Larsen, M., Eriksson, M., Descombes, X., Perrin, G., & Brandtberg, T. (2011). Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. International Journal of Remote Sensing, 32, 5827–5852.

    Article  ADS  Google Scholar 

  • Li, W., Sun, Z., Lu, S., & Omasa, K. (2019). Estimation of the leaf chlorophyll content using multiangular spectral reflectance factor. Plant, Cell & Environment, 42, 3152–3165.

    Article  CAS  Google Scholar 

  • Li, X., Liu, X., Liu, M., Wang, C., & Xia, X. (2015). A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. International Journal of Applied Earth Observation and Geoinformation, 36, 41–53.

    Article  ADS  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 23, 18.

    Google Scholar 

  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis, 11, 591–592.

    CAS  Google Scholar 

  • Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16, 65–70.

    Article  ADS  Google Scholar 

  • Ma, L., Zheng, G., Wang, X., Li, S., Lin, Y., & Ju, W. (2018). Retrieving forest canopy clumping index using terrestrial laser scanning data. Remote Sensing of Environment, 210, 452–472.

    Article  ADS  Google Scholar 

  • Menze, B. H., Kelm, M. B., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., & Hamprecht, F. A. (2009). A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics, 10, 1–16.

    Article  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C., cph], & Lin, C.C. (2015). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien

  • Modica, G., Messina, G., De Luca, G., Fiozzo, V., & Praticò, S. (2020). Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Computers and Electronics in Agriculture, 175, 105500.

    Article  Google Scholar 

  • Navarro, A., Young, M., Allan, B., Carnell, P., & Ierodiaconou, D. (2020). The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sensing of Environment, 242, 111747.

    Article  Google Scholar 

  • Osco, L. P., Ramos, A. P. M., Pereira, D. R., Moriya, R. A. S., & Creste, J. E. (2019). Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sensing, 11, 2925.

    Article  ADS  Google Scholar 

  • Pearson, R. L., & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, 8, 1355.

    ADS  Google Scholar 

  • Rouse, J., Haas, R., Schell, J., Deering, D., & Harlan, J. (1974). Monitoring the vernal advancements and retrogradation. Texas A & M University.

    Google Scholar 

  • Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R., Meador, A. S., Bourdon, J.-F., De Boissieu, F., & Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061.

    Article  Google Scholar 

  • Santos, A. A. D., Marcato Junior, J., Araújo, M. S., Di Martini, D. R., Tetila, E. C., Siqueira, H. L., Aoki, C., Eltner, A., Matsubara, E. T., Pistori, H., Feitosa, R. Q., Liesenberg, V., & Gonçalves, W. N. (2019). Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors, 19, 3595.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Shao, G., Han, W., Zhang, H., Wang, Y., Zhang, L., Niu, Y., Zhang, Y., & Cao, P. (2022). Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery. The Crop Journal, 10, 1376–1385.

    Article  Google Scholar 

  • Shao, G., Han, W., Zhang, H., Zhang, L., Wang, Y., & Zhang, Y. (2023). Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods. Agricultural Water Management, 276, 108064.

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  ADS  Google Scholar 

  • Sumida, A., Watanabe, T., & Miyaura, T. (2019). interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions open. Scientific Reports. https://doi.org/10.1038/s41598-018-31672-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, Q., Jiao, Q., Qian, X., Liu, L., & Dai, H. (2021). Improving the retrieval of crop canopy chlorophyll content using vegetation index combinations. Remote Sensing, 13, 470.

    Article  ADS  Google Scholar 

  • Team, R.C. (2023). A language and environment for statistical computing. R Foundation for Statistical Computing.

    Google Scholar 

  • Tuia, D., Verrelst, J., Alonso, L., Perez-Cruz, F., & Camps-Valls, G. (2011). Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geoscience & Remote Sensing Letters, 8, 804–808.

    Article  ADS  Google Scholar 

  • Ustin, S. L., Gitelson, A. A., Jacquemoud, S., Schaepman, M., Asner, G. P., Gamon, J. A., & Zarco-Tejada, P. (2008). Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment, 113, S67.

    Article  Google Scholar 

  • Vélez, S., Martínez-Peña, R., & Castrillo, D. (2023). Beyond vegetation: A review unveiling additional insights into agriculture and forestry through the application of vegetation indices. J, 6, 421–436.

    Google Scholar 

  • Veronika, K., Lucie, K., Jan, J., Zuzana, L., & Filip, O. (2021). Canopy top, height and photosynthetic pigment estimation using parrot sequoia multispectral imagery and the unmanned aerial vehicle (UAV). Remote Sensing, 13, 705.

    Article  Google Scholar 

  • Verrelst, J., Camps-Valls, G., Munoz-Mari, J., Rivera, J. P., Veroustraete, F., Clevers, J., & Moreno, J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. Isprs Journal of Photogrammetry & Remote Sensing, 108, 273–290.

    Article  ADS  Google Scholar 

  • Verrelst, J., Munoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. (2012). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for sentinel-2 and -3. Remote Sensing of Environment, 118, 127–139.

    Article  ADS  Google Scholar 

  • Vincini, M., & Frazzi, E. (2011). Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll content in planophile crop canopies. Precision Agriculture, 12, 334–344.

    Article  Google Scholar 

  • Vincini, M., Frazzi, E., & D’Alessio, P. (2007). Comparison of narrow-band and broad-band vegetation indices for canopy chlorophyll density estimation in sugar beet. Precision Agriculture, 7, 189–196.

    Google Scholar 

  • Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9, 303–319.

    Article  Google Scholar 

  • Wang, S., Li, Y., Ju, W., Chen, B., Chen, J., Croft, H., Mickler, R. A., & Yang, F. (2020). Estimation of leaf photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005020.

    Article  ADS  Google Scholar 

  • Wu, C., Zheng, N., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148, 1230–1241.

    Article  ADS  Google Scholar 

  • Xue, J., & Su, B. (2017a). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 1353691.

    Article  Google Scholar 

  • Xue, J., & Su, B. (2017b). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors. https://doi.org/10.1155/2017/1353691

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., González, M., & Frutos, A. D. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99, 271–287.

    Article  ADS  Google Scholar 

  • Zhang, Y., Chen, J. M., Miller, J. R., & Noland, T. L. (2008). Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sensing of Environment, 112, 3234–3247.

    Article  ADS  Google Scholar 

  • Zhao, D., Raja Reddy, K., Kakani, V. G., Read, J. J., & Carter, G. A. (2003). Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 257, 205–218.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Innovation 2030-Agricultural Biological Breeding Major Project (2023ZD040580105), Fundamental Research Funds of Chinese Forestry Academy (CAFYBB2022QA001) and Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding (2021C02070-8).

Author information

Authors and Affiliations

Authors

Contributions

QL and XT conducted the experiment and wrote the manuscript. YL designed the study, supervised experiments, supported the data collection and performed revisions of the manuscript. CX, LC and JJ revised the manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanjie Li.

Ethics declarations

Competing interests

The authors declare that they do not know of any competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, Q., Xu, C., Tao, X. et al. Estimating canopy chlorophyll in slash pine using multitemporal vegetation indices from uncrewed aerial vehicles (UAVs). Precision Agric 25, 1086–1105 (2024). https://doi.org/10.1007/s11119-023-10106-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10106-9

Keywords

Navigation