Skip to main content
Log in

Assessment of the position accuracy of a single-frequency GPS receiver designed for electromagnetic induction surveys

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In precision agriculture (PA), compact and lightweight electromagnetic induction (EMI) sensors have extensively been used to investigate the spatial variability of soil, to evaluate crop performance, and to identify management zones by mapping soil apparent electrical conductivity (ECa), a surrogate for primary and functional soil properties. As reported in the literature, differential global positioning systems (DGPS) with sub-metre to centimetre accuracy have been almost exclusively used to geo-reference these measurements. However, with the ongoing improvements in Global Navigation Satellite System (GNSS) technology, a single state-of-the-art DGPS receiver is likely to be more expensive than the geophysical sensor itself. In addition, survey costs quickly multiply if advanced real time kinematic correction or a base and rover configuration is used. However, the need for centimetre accuracy for surveys supporting PA is questionable as most PA applications are concerned with soil properties at scales above 1 m. The motivation for this study was to assess the position accuracy of a GNSS receiver especially designed for EMI surveys supporting PA applications. Results show that a robust, low-cost and single-frequency receiver is sufficient to geo-reference ECa measurements at the within-field scale. However, ECa data from a field characterized by a high spatial variability of subsurface properties compared to repeated ECa survey maps and remotely sensed leaf area index indicate that a lack of positioning accuracy can constrain the interpretability of such measurements. It is therefore demonstrated how relative and absolute positioning errors can be quantified and corrected. Finally, a summary of practical implications and considerations for the geo-referencing of ECa data using GNSS sensors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bogena, H., Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Heinrich, I., et al. (2016). TERENO: German network of terrestrial environmental observatories. Journal of large-scale research facilities, 2, A52.

    Article  Google Scholar 

  • Bramley, R. G. V. (2009). Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop & Pasture Science, 60(3), 197–217.

    Article  Google Scholar 

  • Brevik, E. C. (2001). Evaluation of selected factors that may infl ue nce the application of electromagnetic induction technology to soil science investigations in Iowa. Retrospective Theses and Dissertations, 416. http://lib.dr.iastate.edu/rtd/416.

  • Corwin, D. L. (2008). Past, present, and future trends of soil electrical conductivity measurements using geophysical methods. In B. Allred, J. J. Daniels, & M. R. Ehsani (Eds.), Handbook of agricultural geophysics (pp. 17–44). Boca Raton, USA: CRC Press.

    Google Scholar 

  • Cressie, N., & Kornak, J. (2003). Spatial statistics in the presence of location error with an application to remote sensing of the environment. Statistical Science, 18(4), 436–456.

    Article  Google Scholar 

  • Delefortrie, S., De Smedt, P., Saey, T., Van De Vijver, E., & Van Meirvenne, M. (2014). An efficient calibration procedure for correction of drift in EMI survey data. Journal of Applied Geophysics, 110, 115–125.

    Article  Google Scholar 

  • Ehrl, M., Stempfhuber, W., Auernhammer, H., & Demmel, M. (2003). Quality assessment of agricultural positioning and communication systems. In J. V. Stafford & A. Werner (Eds.), Precision agriculture: Proceedings of the 4th European conference on precision agriculture (pp. 205–210). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • El-Rabbany, A. (2006). Introduction to GPS: The global positioning system (Vol. 2). Norwood, MA, USA: Artech House.

    Google Scholar 

  • Francés, A. P., & Lubczynski, M. W. (2011). Topsoil thickness prediction at the catchment scale by integration of invasive sampling, surface geophysics, remote sensing and statistical modeling. Journal of Hydrology, 405, 31–47.

    Article  Google Scholar 

  • Gottfried, T., Auerswald, K., & Ostler, U. (2012). Kinematic correction for a spatial offset between sensor and position data in on-the-go sensor applications. Computers and Electronics in Agriculture, 84, 76–84.

    Article  Google Scholar 

  • Huang, J., Nhan, T., Wong, V. N. L., Johnston, S. G., Lark, R. M., & Triantafilis, J. (2014). Digital soil mapping of a coastal acid sulfate soil landscape. Soil Research, 52(4), 327–339.

    Article  Google Scholar 

  • Kachanoski, R. G., Gregorisch, E. G., & van Wesenbeeck, I. J. (1988). Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods. Canadian Journal of Soil Science, 68, 715–722.

    Article  Google Scholar 

  • Kaplan, E. D., & Hegarty, C. J. (2006). Understanding GPS—Principles and applications (2nd ed.). Norwood, MA, USA: Artech House.

    Google Scholar 

  • Kobayashi, M., Ingels, F., & Bennett, G. (1992). Determination of the probability density function of GPS (Global Positioning Systems) positioning error. In Proceedings of the 48th annual meeting of the institute of navigation (pp. 219–232). Dayton, OH.

  • Lark, R. M., Stafford, J. V., & Bolam, H. C. (1997). Limitations on the spatial resolution of yield mapping for combinable crops. Journal of Agricultural Engineering Research, 66(3), 183–193.

    Article  Google Scholar 

  • Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying (4th ed.). New York, NJ, USA: Wiley.

    Google Scholar 

  • López-Lozano, R., Casterad, M. A., & Herrero, J. (2010). Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping. Computers and Electronics in Agriculture, 73, 219–229.

    Article  Google Scholar 

  • Matérn, B. (1986). Spatial variation (Vol. 36)., Lecture Notes in Statistics New York, USA: Springer.

    Book  Google Scholar 

  • Matias, B., Oliveira, H., Almeida, J., Dias, A., Ferreira, H., Martins, A., et al. (2015). High-accuracy low-cost RTK-GPS for an unmannned surface vehicle. In OCEANS15 MTS (pp. 1–4). Genova: IEEE.

  • McBratney, A. B., & Pringle, M. J. (1999). Estimating average and proportional variograms of soil properties and their potential use in Precision Agriculture. Precision Agriculture, 1(2), 125–152.

    Article  Google Scholar 

  • McBratney, A. B., Santos, M. L. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • McLoud, P. R., Gronwald, R., & Kuykendall, H. (2007). Precision agriculture: NRCS support for emerging technologies., Agronomy Technical Note No.1 Washington, DC, USA: USDA-NRCS.

    Google Scholar 

  • Mertens, F. M., Pätzold, S., & Welp, G. (2008). Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity. Journal of Plant Nutrition and Soil Science, 171, 146–154.

    Article  CAS  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2005). The Matern function as a general model for soil variograms. Geoderma, 128(3–4), 192–207.

    Article  Google Scholar 

  • National Marine Electronics Association. (2012). NMEA 0183, The Standard for Interfacing Marine Electronics. Retrieved May 01, 2017, from https://www.nmea.org/content/nmea_standards/nmea_2000_ed3_10.asp.

  • NovAtel Inc. (2003). GPS position accuracy measures. Calgary, Canada: NovAtel Inc.

    Google Scholar 

  • O’Leary, G. (2006). Standards for electromagnetic induction mapping in the grains industry. In J. Peters (Ed.), GRDC precision agriculture manual Barton. Barton, Australia: Grains Research and Development Corporation.

    Google Scholar 

  • Odolinski, R., & Teunissen, P. J. G. (2016). Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: A low-cost and high-grade receivers GPS-BDS RTK analysis. Journal of Geodesy, 90(11), 1255–1278.

    Article  Google Scholar 

  • Pesyna, K. M. J., Heath, R. W. J., & Humphreys, T. E. (2014). Centimeter positioning with a smartphone-quality GNSS Antenna. In 27th international technical meeting of the satellite division of the Institute of Navigation (pp. 1568–1577). Tampa, FL: ION Publications.

  • Rudolph, S., van der Kruk, J., von Hebel, C., Ali, M., Herbst, M., Montzka, C., et al. (2015). Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma, 241–242, 262–271.

    Article  Google Scholar 

  • Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2001). Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31(3), 239–264.

    Article  Google Scholar 

  • Takasu, T., & Yasuda, A. (2008). Evaluation of RTK-GPS performance with low-cost single-frequency GPS receivers. In International symposium on GPS/GNSS, Tokyo, Japan (pp. 852–861). Tweed Heads, Australia: IGNSS.

  • Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In International symposium on GPS/GNSS, Jeju, Korea (pp. 4–6). Tweed Heads, Australia: IGNSS.

  • Taylor, R. K., Schrock, M. D., Bloomfield, J., Bora, G., Brockmeier, G., Burton, W., et al. (2004). Dynamic testing of GPS receivers. Transactions of the ASAE, 47(4), 1017–1025.

    Article  Google Scholar 

  • Triantafilis, J., & Lesch, S. M. (2005). Mapping clay content variation using electromagnetic induction techniques. Computers and Electronics in Agriculture, 46(1–3), 203–237.

    Article  Google Scholar 

  • Ublox. (2010). LEA-6 u-blox 6 GPS modules data sheet. Thalwil, Switzerland: Ublox.

    Google Scholar 

  • Ublox. (2016). U-center: GNSS evaluation software for Windows. Thalwil, Switzerland: Ublox.

    Google Scholar 

  • Vitharana, U. W. A., van Meirvenne, M., Simpson, D., Cockx, L., & de Baerdemaeker, J. (2008). Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma, 143, 206–215.

    Article  CAS  Google Scholar 

  • von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., et al. (2014). Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resources Research, 50(3), 2732–2748. https://doi.org/10.1002/2013wr014864.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Weltzien, C., Noack, P. O., & Persdson, K. (2003). GPS receiver accuracy test—dynamic and static for best comparison of results. In J. Stafford & A. Werner (Eds.), Proceedings of the 4th European conference on precision agriculture (pp. 717–722). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Federal Ministry of Education and Research (Competence network for phenotyping science-CROP.SENSe.net). The contributions of B.P. Marchant are published with the permission of the Executive Director of the British Geological Survey (NERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Rudolph.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolph, S., Marchant, B.P., Weihermüller, L. et al. Assessment of the position accuracy of a single-frequency GPS receiver designed for electromagnetic induction surveys. Precision Agric 20, 19–39 (2019). https://doi.org/10.1007/s11119-018-9578-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9578-1

Keywords

Navigation