Skip to main content

Advertisement

Log in

Nutrient quantification in fresh and dried mixtures of ryegrass and clover leaves using laser-induced breakdown spectroscopy

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that can be used to facilitate variable rate fertilizer application, potentially increasing yield, reducing costs and reducing environmental side effects of nutrient loss. LIBS can give real-time information about macro and micro nutrients with little to no sample preparation. The study reported in this paper investigated whether LIBS can predict nutrient levels of fresh and dried pelletized pasture and what the limitations are. Spectra were acquired in air and under argon. Partial least square regression was used to build models for each macro and micro nutrient. The best results were for potassium, sodium and manganese with root mean square errors of cross-validation of 0.20, 0.029 and 0.0008 wt%, respectively, coefficient of determination of 0.92, 0.93 and 0.90, limits of detection of 0.99, 0.11 and 0.0027 wt%, and precisions of 0.30, 0.042 and 0.0012 wt%. LIBS can be used to assess nutrient levels of fresh pasture. Reducing the shot-to-shot variation will lead to improved calibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allegrini, F., & Olivieri, A. C. (2014). IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Analytical Chemistry, 86(15), 7858–7866. https://doi.org/10.1021/ac501786u.

    Article  PubMed  CAS  Google Scholar 

  • ASTM E1655-05. (2012). Standard practices for infrared multivariate quantitative analysis. West Conshohocken, PA, USA: ASTM International.

  • Barker, A. V., & Pilbeam, D. J. (2006). Handbook of plant nutrition (1st ed.). Boca Raton, FL, USA: CRC Press/Taylor & Francis.

    Book  Google Scholar 

  • Barnett, W. B., Fassel, V. A., & Kniseley, R. N. (1968). Theoretical principles of internal standardization in analytical emission spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 23(10), 643–664.

    Article  CAS  Google Scholar 

  • Boqué, R., & Rius, F. X. (1996). Multivariate detection limits estimators. Chemometrics and Intelligent Laboratory Systems, 32(1), 11–23. https://doi.org/10.1016/0169-7439(95)00049-6.

    Article  Google Scholar 

  • Boyain-Goitia, A. R., Beddows, D. C. S., Griffiths, B. C., & Telle, H. H. (2003). Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy. Applied Optics, 42(30), 6119–6132.

    Article  PubMed  CAS  Google Scholar 

  • Braga, J. W. B., Trevizan, L. C., Nunes, L. C., Rufini, I. A., Santos, D., Jr., & Krug, F. J. (2010). Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry. Spectrochimica Acta—Part B: Atomic Spectroscopy, 65(1), 66–74. https://doi.org/10.1016/j.sab.2009.11.007.

    Article  CAS  Google Scholar 

  • Chauhan, D. K., Tripathi, D. K., Rai, N. K., & Rai, A. K. (2011). Detection of biogenic silica in leaf blade, leaf sheath, and stem of bermuda grass (Cynodon dactylon) using LIBS and phytolith analysis. Food Biophysics, 6(3), 416–423. https://doi.org/10.1007/s11483-011-9219-y.

    Article  Google Scholar 

  • Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1), 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011.

    Article  CAS  Google Scholar 

  • Cremers, D., & Radziemski, L. (2013a). Introduction. In Handbook of laser-induced breakdown spectroscopy (2nd ed., p. 3). West Sussex, UK: Wiley.

  • Cremers, D., & Radziemski, L. (2013b). Basics of the LIBS plasma. In Handbook of laser-induced breakdown spectroscopy (2nd ed., pp. 48–58). West Sussex, UK: Wiley.

  • Cremers, D., & Radziemski, L. (2013c). Qualitative LIBS analysis. Handbook of laser-induced breakdown spectroscopy (pp. 151–183). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Cremers, D., & Radziemski, L. (2013d). LIBS analytical figures of merit and calibration. In Handbook of Laser-Induced Breakdown Spectroscopy (2nd ed., pp. 131–140). West Sussex, UK: Wiley.

  • Devey, K., Mucalo, M., Rajendram, G., & Lane, J. (2015). Pasture vegetation elemental analysis by laser-induced breakdown spectroscopy. Communications in Soil Science and Plant Analysis, 46, 72–80. https://doi.org/10.1080/00103624.2014.988578.

    Article  Google Scholar 

  • Fink, H., Panne, U., & Niessner, R. (2002). Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Analytical Chemistry, 74(17), 4334–4342. https://doi.org/10.1021/ac025650v.

    Article  PubMed  CAS  Google Scholar 

  • Gorham, J. (2006). Sodium. In A. V. Barker & D. J. Pilbeam (Eds.), Handbook of plant nutrition (1st ed., pp. 573–575). Boca Raton, FL, USA: CRC Press/Taylor & Francis.

    Google Scholar 

  • Hahn, D. W., & Omenetto, N. (2012). Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Applied Spectroscopy, 66(4), 347–419. https://doi.org/10.1366/11-06574.

    Article  PubMed  CAS  Google Scholar 

  • Jull, H., Ewart, P., Künnemeyer, R., & Schaare, P. (2017). Selective surface sintering using a laser-induced breakdown spectroscopy system. Journal of Spectroscopy, 2017, 1–11. https://doi.org/10.1155/2017/1478541.

    Article  CAS  Google Scholar 

  • Jull, H., Künnemeyer, R., Talele, S., Schaare, P., & Seelye, M. (2015). Laser-induced breakdown spectroscopy analysis of sodium in pelletised pasture samples. In D. Bailey, S. Demidenko, & G. S. Gupta (Eds.), 6th International conference on automation, robotics and applications, ICARA 2015 (pp. 262–268). Danvers, MA, USA: Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/icara.2015.7081157.

  • Kramida, A., Yu. Ralchenko, Reader, J., & NIST ASD Team. (2017). NIST Atomic Spectra Database (ver. 5.2). Retrieved January 3, 2018, from http://physics.nist.gov/asd.

  • Lazic, V., Rauschenbach, I., Jovicevic, S., Jessberger, E. K., Fantoni, R., & Di Fino, M. (2007). Laser induced breakdown spectroscopy of soils, rocks and ice at subzero temperatures in simulated Martian conditions. Spectrochimica Acta—Part B: Atomic Spectroscopy, 62(12), 1546–1556. https://doi.org/10.1016/j.sab.2007.10.006.

    Article  CAS  Google Scholar 

  • Martin, M. Z., Stewart, A. J., Gwinn, K. D., & Waller, J. C. (2010). Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue. Applied Optics, 49(13), C161–C167.

    Article  CAS  Google Scholar 

  • Mehmood, T., Martens, H., Sæbø, S., Warringer, J., & Snipen, L. (2011). A partial least squares based algorithm for parsimonious variable selection. Algorithms for Molecular Biology, 6(1), 1–12. https://doi.org/10.1186/1748-7188-6-27.

    Article  Google Scholar 

  • Nunes, L. C., Batista Braga, J. W., Trevizan, L. C., Florêncio De Souza, P., Arantes De Carvalho, G. G., Júnior, D. S., et al. (2010). Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves. Journal of Analytical Atomic Spectrometry, 25(9), 1453–1460.

    Article  CAS  Google Scholar 

  • Ortiz, M. C., Sarabia, L. A., Herrero, A., Sánchez, M. S., Sanz, M. B., Rueda, M. E., et al. (2003). Capability of detection of an analytical method evaluating false positive and false negative (ISO 11843) with partial least squares. Chemometrics and Intelligent Laboratory Systems, 69(1), 21–33. https://doi.org/10.1016/S0169-7439(03)00110-2.

    Article  CAS  Google Scholar 

  • Rai, P. K., Jaiswal, D., Rai, N. K., Pandhija, S., Rai, A. K., & Watal, G. (2009). Role of glycemic elements of Cynodon dactylon and Musa paradisiaca in diabetes management. Lasers in Medical Science, 24(5), 761–768.

    Article  PubMed  Google Scholar 

  • Rauschenbach, I., Lazic, V., Pavlov, S. G., Hübers, H. W., & Jessberger, E. K. (2008). Laser induced breakdown spectroscopy on soils and rocks: Influence of the sample temperature, moisture and roughness. Spectrochimica Acta—Part B: Atomic Spectroscopy, 63(10), 1205–1215. https://doi.org/10.1016/j.sab.2008.08.006.

    Article  CAS  Google Scholar 

  • Thakur, S. N. (2007). Atomic emission spectroscopy. In J. P. Singh & S. N. Thakur (Eds.), Laser-induced breakdown spectroscopy (pp. 29–30). Oxford, UK: Elsevier.

    Google Scholar 

  • van Maarschalkerweerd, M., & Husted, S. (2015). Recent developments in fast spectroscopy for plant mineral analysis. Frontiers in Plant Science, 6, 169. https://doi.org/10.3389/fpls.2015.00169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wold, S., Johansson, E., & Cocchi, M. (1993). PLS—partial least-squares projections to latent structures. In H. Kubinyi (Ed.), 3D QSAR in drug design: Theory, methods and applications (pp. 523–550). Leiden, The Netherlands: ESCOM.

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and offer continuing respect and admiration to deceased colleague Dr. Sadhana Talele, who was not able to see this work completed. Financial assistance from the New Zealand Ministry of Business, Innovation and Employment under contract C11X1209 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jull.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jull, H., Künnemeyer, R. & Schaare, P. Nutrient quantification in fresh and dried mixtures of ryegrass and clover leaves using laser-induced breakdown spectroscopy. Precision Agric 19, 823–839 (2018). https://doi.org/10.1007/s11119-018-9559-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9559-4

Keywords

Navigation