Skip to main content
Log in

Dimensional Contraction in Wasserstein Distance for Diffusion Semigroups on a Riemannian Manifold

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove a refined contraction inequality for diffusion semigroups with respect to the Wasserstein distance on a compact Riemannian manifold taking account of the dimension. The result generalizes in a Riemannian context, the dimensional contraction established in Bolley et al. J. Lond. Math. Soc. 90(1), 309–332 (2014) for the Euclidean heat equation. It is proved by using a dimensional coercive estimate for the Hodge-de Rham semigroup on 1-forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques of Panoramas et Synthèses, vol. 10. Société Mathematical de France, Paris (2000)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematical ETH Zürich. Birkhäuser, Basel (2008)

  3. Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In: 21th of Lecture Notes in Mathematical Séminaire de Probabilités, vol. 1247, pp 137–172. Springer, Berlin (1987)

  4. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on Probability Theory of Lecture Notes in Mathematical (Saint-Flour, 1992), vol. 1581, pp 1–114. Springer, Berlin (1994)

  5. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bolley, F., Gentil, I., Guillin, A.: Dimensional contraction via Markov transportation distance. J. Lond. Math. Soc. 90(1), 309–332 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators of Grund. Math. Wiss., vol. 348. Springer, Berlin (2014)

    Book  Google Scholar 

  8. Bakry, D., Gentil, I., Ledoux, M.: On Harnack inequality and optimal transportation. To appear in Ann. Sc. Norm. Sup. Pisa

  9. Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Part. Diff. Eq. 34(2), 193–231 (2009)

    Article  MATH  Google Scholar 

  10. Dolbeault, J., Nazaret, B., Savaré, G.: From Poincaré to logarithmic sobolev inequalities: a gradient flow approach. SIAM J. Math. Anal. 44(5), 3186–3216 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. De Pascale, L., Gelli, M.S., Granieri, L.: Minimal measures, one-dimensional currents and the Monge-Kantorovich problem. Calc. Var. 27(1), 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. To appear in Inventiones Mathematicae

  13. Gigli, N., Kuwada, K., Ohta, S.-I.: Heat flow on Alexandrov spaces. Comm. Pure Appl. Math. 66(3), 307–331 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758–3774 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuwada, K.: Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates. To appear in Calculus of Variations and Partial Differential Equations

  16. Lichnerowicz, A.: Géométrie des groupes de transformations. In: Travaux et Recherches Mathématiques, vol. III. Dunod, Paris (1958)

  17. Otto, F., Westdickenberg, M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

    Article  MathSciNet  Google Scholar 

  18. Savaré, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces. Discrete Contin. Dyn. Syst. 34(4), 1641–1661 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Villani, C.: Optimal Transport, Old and New of Grund. Math. Wiss, vol. 338. Springer, Berlin (2009)

    Google Scholar 

  20. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm. Pure Appl. Math. 68, 923–940 (2005)

    Article  MathSciNet  Google Scholar 

  21. Wang, F.-Y.: Functional Inequalities, Markov Processes, and Spectral Theory. Science Press, Beijing (2004)

    Google Scholar 

  22. Wang, F.-Y.: Equivalent semigroup properties for the curvature-dimension condition. Bull. Sci. Math. 135(6-7), 803–815 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Gentil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentil, I. Dimensional Contraction in Wasserstein Distance for Diffusion Semigroups on a Riemannian Manifold. Potential Anal 42, 861–873 (2015). https://doi.org/10.1007/s11118-015-9460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9460-y

Keywords

Mathematics Subject Classification (2010)

Navigation