Skip to main content
Log in

Cd-Induced Autophagy Responses in Pakchoi as Revealed by Transcriptome Analysis

  • RESEARCH
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a toxic heavy metal element, which can cause oxidative stress in plant cells and induce cell damage. Currently, the research investigating autophagy function and Cd injury in plants is still limited. In our study, we exposed Pakchoi plants to Cd chloride at different concentrations (0, 2, 4, 6, and 8 mg·L−1) for 4 consecutive weeks. The results showed that toxic damage of Pakchoi was induced by Cd exposure and its Cd injury accumulation showed a positive dose relationship with metal concentrations. When Pakchoi was exposed to Cd, it generated excessive reactive oxygen species (ROS), especially H2O2. Our data revealed that LC3 upregulation and autophagosome formation were noted in H2O2-activated root cells, indicating that Cd damage caused autophagy in Pakchoi. Under Cd stress, the antioxidant enzyme activity of peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD) were decreased as Cd concentration was increased, lowest in 8 mg·L−1 treatment. Using transcriptome analysis by RNA sequencing, we identified 860 significant differentially expressed genes (DEGs) with a fold change of no less than 2 between the Cd-treated and the control groups, among which 513 genes were upregulated and 347 genes were downregulated. The DEGs were mostly enriched in functions related to the hormonal regulation of digestion and absorption, transport processes, transporter activity, and the apical plasma membrane composition. A total of 6 autophagy-related genes, including 4 AMPK genes, 1 ATG13 gene, and 1 Beclin1 gene, were found to have significantly different expression levels in the Cd groups. The expression levels of these 6 genes were significantly different between the control and Cd groups (p < 0.05) when validated by real-time quantitative PCR. Furthermore, we found the ratio of p-AMPK and AMPK increased significantly in the Cd group (p < 0.05), indicating that Cd-induced autophagy may be mediated by AMPK phosphorylation. This research provides a better understanding of the stress effect of autophagy during Cd injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

Cd:

Cadmium

ATGs:

Autophagy-related proteins

PI-3K:

Phosphatidylinositol 3-kinase

PI3P:

Phosphatidylinositol triphosphate

PAS:

Pre-autophagosomal structure/phagophore assembly site

PE:

Phosphatidylethanolamine

MDC:

Monodansylcadaverine

SOD:

Superoxide dismutase

APX:

Ascorbic acid peroxidase

CAT:

Catalase

POD:

Peroxidase

ICP-MS:

Inductively coupled plasma mass spectrometry

NBT:

Nitro blue tetrazolium

BCA:

Bicinchoninic acid

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

CEL:

Chemiluminescence

DEGs:

Differentially expressed genes

Nt:

NCBI non-redundant nucleotide sequences

Pfam:

Protein family

KOG/COG:

Clusters of orthologous groups of proteins

Swiss-Prot:

A manually annotated and reviewed protein sequence database

KO:

KEGG ortholog database

GO:

Gene ontology

SD:

Standard deviation

qRT-PCR:

Quantitative real-time PCR

References

  • Aebi H (1984) Catalase in Vitro Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 107(9):4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andresen E, Küpper H (2013) Cadmium toxicity in plnats. Met Ions Life Sci 11:395–413

    CAS  PubMed  Google Scholar 

  • Arisha MH, Aboelnasr H, Ahmad MQ, Liu Y, Tang W, Gao R, Yan H, Kou M, Wang X, Zhang Y, Li Q (2020) Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress. BMC Genomics 21(1):197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avin-Wittenber T (2019) Autophagy and its role in plant abiotic stress management. Plant cell environ 42(3):1045-1053

  • Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL (2000) The Pfam protein families database. Nucleic Acids Res 28(1):263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y (2020) Links between drought stress and autophagy in plants. Plant Signal Behav 15(8):1779487

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2(1):2–11

    Article  CAS  PubMed  Google Scholar 

  • Calero CM Uñoz N, Exposito IN Odriguez M, Collado II Renal AM, María RM, Sandalio LM (2019) Cadmium induces reactive oxygen species-dependent pexophagy in Arabidopsis leaves. Plant Cell Environ 42(9):2696–2714

  • Chaffei-Haouari C, Carrayol E, Ghorbel MH, Gouia H (2009) Physiological and biochemical effects of cadmium toxicity in enzymes involved in nitrogen and amino-acid metabolism in tomato plants. Acta Bot Gallica 156(3):477–486

    Article  CAS  Google Scholar 

  • Chakrabarty D, Datta SK (2008) Micropropagation of gerbera: Lipid peroxidation and antioxidant enzyme activities during acclimatization process. Acta Physiol Plant 30(3):325–331

    Article  CAS  Google Scholar 

  • Chen H, Dong J, Wang T (2021a) Autophagy in plant abiotic stress management. Int J Mol Sci 22(8):4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Leboutet R, Largeau C, Zentout S, Lefebvre C, Delahodde A, Culetto E, Legouis R (2021b) Autophagy facilitates mitochondrial rebuilding after acute heat stress via a DRP-1-dependent process. J Cell Biol 220(4):e201909139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Li TQ, Han X, Ding ZL, Yang XE, Jin YF (2012) Cadmium accumulation in different Pakchoi cultivars and screening for pollution-safe cultivars. J Zhejiang Univ Sci B 13(6):494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang HW, Li WS, Tu SX, Ding YZ, Wang RG, Rensing C, Li YP, Feng RW (2019) Differences in cadmium absorption by 71 leaf vegetable varieties from different families and genera and their health risk assessment. Ecotoxicol Environ Saf 184:109593

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro H, Liu Y, Ahmadi B, Templeton DM (2018) Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Arch Toxicol 92(2):619–631

    Article  CAS  PubMed  Google Scholar 

  • Gaiss S, Amarasiriwardena D, Alexander D, Wu F (2019) Tissue level distribution of toxic and essential elements during the germination stage of corn seeds (Zea mays L.) using LA-ICP-MS. Environ Pollut 252(A):657–665

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Pub He 17(11):3782

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in Higher Plants Plant Physiol 59(2):309–314

    CAS  PubMed  Google Scholar 

  • Gu Q, Wang C, Xiao Q, Chen Z, Han Y (2021) Melatonin confers plant cadmium tolerance: a update. Int J Mol Sci 22(21):11704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwinn DM, Shaw RJ (2010) 3-AMPK control of mTOR signaling and growth. Enzymes 28:49–75

    Article  CAS  Google Scholar 

  • Han S, Yu B, Wang Y, Liu Y (2011) Role of plant autophagy in stress response. Protein Cell 2(10):784–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2006) Neither LKB1 nor AMPK are the direct targets or metformin. Gastroenterology 31:973

  • Hu Y, Zhang M, Yin F, Cao X, Fan S, Wu C, Xiao X (2022) Genome-wide identification and expression analysis of BrATGs and their different roles in response to abiotic stresses in Chinese cabbage. Agronomy 12:2976

    Article  CAS  Google Scholar 

  • Huo L, Guo Z, Wang Q, Jia X, Sun X, Ma F (2022) The protective role of MdATG10-mediated autophagy in apple plant under cadmium stress. Ecotoxicol Environ Saf 234:113398

    Article  CAS  PubMed  Google Scholar 

  • Ikari S, Lu SL, Hao F, Imai K, Araki Y, Yamamoto YH, Tsai CY, Nishiyama Y, Shitan N, Yoshimori T, Otomo T, Noda T (2020) Starvation-induced autophagy via calcium-dependent TFEB dephosphorylation is suppressed by Shigyakusan. PLoS ONE 15(3):e0230156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Article  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N (2018) Ion channels in the regulation of autophagy. Autophagy 14(1):3–21

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Kroemer G (2019) Biological function of autophagy genes: a disease perspective. Cell 176(1–2):11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Vierstra BD (2014) Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy 10(8):1466–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoswini C, Anita M (2021) Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicol Environ Saf 209:111817

    Article  Google Scholar 

  • Mehrdad R, Mehravar R, Sohrab K, Ali-Akbar M (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8(3):135–145

    Google Scholar 

  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T (2016) Autophagy in plants—what’s new on the menu? Trends Plant Sci 21(2):134–144

    Article  CAS  PubMed  Google Scholar 

  • Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Wang X, Bassham DC, Walley J, Yin Y (2017) Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell 41(1):33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Bio 2:211–216

    Article  CAS  Google Scholar 

  • Pavlíková D, Zemanová V, Procházková D, Pavlík M, Száková J, Wilhelmová N (2014) The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicol Environ Saf 100:166–170

    Article  PubMed  Google Scholar 

  • Qi H, Li J, Xia FN, Chen JY, Lei X, Han MQ, Xie LJ, Zhou QM, Xiao S (2020) Arabidopsis SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13. Plant Cell 32(1):263–284

    Article  CAS  PubMed  Google Scholar 

  • Robaglia C, Thomas M, Meyer C (2012) Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15(3):301–307

    Article  CAS  PubMed  Google Scholar 

  • Saikia R, Joseph J (2021) AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med 99(11):1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Vasanthan B, Arora A (2011) Calcium regulates Gladiolus flower senescence by influencing antioxidative enzymes activity. Acta Physiol Plant 33(5):1897–1904

    Article  CAS  Google Scholar 

  • Saqib B, Abdus S, Muhammad AC, Qingling F, Muhammad JK, Jun Z, Muhammad S, Kashif AK, Umeed A, Hongqing H (2018) Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. Int J Phytoremediat 20(12):1221–1228

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang P, Jia X, Huo L, Che R, Ma F (2018) Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J 16(2):545–557

    Article  CAS  PubMed  Google Scholar 

  • Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23(10):3761–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Huang F, You X, Hou X (2018) Molecular cloning, characterization and expression analysis of BcHHP3 under abiotic stress in Pak-choi (Brassica rapa ssp. Chinensis). J Plant Interact 14(1):1–9

  • Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28(6):947–957

  • Yamauchi S, Mano S, Oikawa K, Hikino K, Teshima KM, Kimori Y, Nishimura M, Shimazaki KI, Takemiya A (2019) Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening. Proc Natl Acad Sci USA 116(38):19187–19192

  • Yan S, Ling Q, Bao Z, Chen Z, Yan S, Dong Z, Zhang B, Deng B (2009) Cadmium accumulation in pak choi (Brassica chinensis L.) and estimated dietary intake in the suburb of Hangzhou city, China. Food Addit Contam Partb Surveill 2(1):74–78

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):14

    Article  Google Scholar 

  • Zhang Y, Wang Y, Wen W, Shi Z, Gu Q, Ahammed GJ, Cao K, Shah Jahan M, Shu S, Wang J, Sun J, Guo S (2021) Hydrogen peroxide mediates spermidine-induced autophay to alleviate salt stress in cucumber. Autophagy 17(10):2876–2890

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu J (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci U S A 113(7):1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang J, Yu JQ, Chen Z (2014) Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci 5:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Chung KP, Cui Y, Lin W, Gao C, Kang BH, Jiang L (2017) ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci U S A 114(3):426–435

    Article  Google Scholar 

  • Zhuo L, Syed WAS, Qin Z, Xijie Y, Xiaohua T (2021) The contributions of miR-25–3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. Autophagy 287:117554

Download references

Funding

This research was funded by the National Natural Science Foundation of China (NSFC) (31860560), the Jiangxi Natural Science Foundation (20224BAB205027), and Jiangxi Modern Agricultural Industry Technology System Construction Project (JXARS-16). The NSFC’s role in the study was to financially support the investigator and students who designed and performed experiments, collected and analyzed the data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.X. designed the research. L.M., Z.M., S.S., and W.C. carried out the experiments. X.X., L.M., and S.S. analyzed the data. X.X., L.M., and Z.M. wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to XIAO Xufeng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 669 KB)

Supplementary file2 (XLS 460 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L.I., Shucheng, S.I., Ming, Z. et al. Cd-Induced Autophagy Responses in Pakchoi as Revealed by Transcriptome Analysis. Plant Mol Biol Rep 42, 165–182 (2024). https://doi.org/10.1007/s11105-023-01403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-023-01403-8

Keywords

Navigation