Skip to main content

Advertisement

Log in

AMPK: a key regulator of energy stress and calcium-induced autophagy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autophagy is a well-known cell-survival strategy orchestrated by a conserved set of proteins. It equips the cells with mechanisms to attain homeostasis during unfavorable conditions such as stress by breaking down the cellular components and reusing them for energy as well as for building new components required for survival. A basal level of autophagy is required for achieving homeostasis under normal conditions through regular turnover of macromolecules and organelles. Initiation of autophagy is regulated by two key components of the nutrient/energy sensor pathways; mammalian target of rapamycin 1 (mTORC1) and AMP-activated kinase (AMPK). Under energy-deprived conditions, AMPK is activated triggering autophagy, whereas, in nutrient-rich conditions, the growth-promoting kinase mTORC1 is activated inhibiting autophagy. Thus, the reciprocal regulation of autophagy by AMPK and mTORC1 defines a fundamental mechanism by which cells respond to nutrient availability. Interestingly, cytoplasmic calcium is also found to be an activator of AMPK and autophagy through a calmodulin/CaMKKβ pathway. However, the physiological significance of the regulation of autophagy by cytoplasmic calcium is currently unclear. This review focuses on the current understanding of the mechanism of autophagy and its regulation by AMPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Galluzzi L, Baehrecke EH, Ballabio A et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36:1811–1836. https://doi.org/10.15252/embj.201796697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Melia TJ, Lystad AH, Simonsen A (2020) Autophagosome biogenesis: from membrane growth to closure. J Cell Biol 219:e202002085

  3. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244. https://doi.org/10.1146/annurev-biochem-061516-044820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nakatogawa H (2020) Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 21:439–458

    Article  PubMed  CAS  Google Scholar 

  5. Doherty J, Baehrecke EH (2018) Life death and autophagy. Nat Cell Biol 20:1110–1117

    Article  PubMed  CAS  Google Scholar 

  6. Bento CF, Renna M, Ghislat G et al (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  PubMed  CAS  Google Scholar 

  7. Morishita H, Mizushima N (2019) Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol 35:453–475. https://doi.org/10.1146/annurev-cellbio-100818

    Article  PubMed  CAS  Google Scholar 

  8. Li C, Li L, Yang M et al (2020) PACS-2: a key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 160:105080

  9. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  PubMed  CAS  Google Scholar 

  10. Mortimore GE, Miotto G, Venerando R, Kadowaki M (1996) Autophagy. Subcell Biochem 27:93–135

    Article  PubMed  CAS  Google Scholar 

  11. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40. https://doi.org/10.1146/annurev.nutr.27.061406.093749

    Article  PubMed  CAS  Google Scholar 

  12. Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 7:539–564

    Article  PubMed  CAS  Google Scholar 

  13. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32. https://doi.org/10.1007/978-3-642-00302-8_1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mao K, Klionsky DJ (2017) Xenophagy: a battlefield between host and microbe and a possible avenue for cancer treatment. Autophagy 13:223–224

    Article  PubMed  CAS  Google Scholar 

  15. Bauckman KA, Owusu-Boaitey N, Mysorekar IU (2015) Selective autophagy: xenophagy. Methods 75:120–127. https://doi.org/10.1016/j.ymeth.2014.12.005

    Article  PubMed  CAS  Google Scholar 

  16. Klionsky DJ, Baehrecke EH, Brumell JH et al (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7:1273–1294

  17. Li ZL, Lerman LO (2012) Impaired myocardial autophagy linked to energy metabolism disorders. Autophagy 8:992–994. https://doi.org/10.4161/auto.20285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Schuck S (2020) Microautophagy – distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci 133(17):jcs246322. https://doi.org/10.1242/jcs.246322

  19. Suzuki K, Kirisako T, Kamada Y et al (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981. https://doi.org/10.1093/emboj/20.21.5971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701. https://doi.org/10.1083/jcb.200803137

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  PubMed  CAS  Google Scholar 

  22. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104

    Article  PubMed  CAS  Google Scholar 

  23. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3:295–299

    Article  PubMed  CAS  Google Scholar 

  24. Cuervo AM, Dice JF (1998) Lysosomes a meeting point of proteins chaperones and proteases. J Mol Med 76:6–12

    Article  PubMed  CAS  Google Scholar 

  25. Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125–1136

    Article  PubMed  CAS  Google Scholar 

  26. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1:11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Klionsky DJ, Cregg JM, Dunn WA et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  PubMed  CAS  Google Scholar 

  29. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  PubMed  CAS  Google Scholar 

  30. Ktistakis NT, Tooze SA (2016) Digesting the expanding mechanisms of autophagy. Trends Cell Biol 26:624–635

    Article  PubMed  CAS  Google Scholar 

  31. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501

    Article  PubMed  CAS  Google Scholar 

  32. Yan J, Kuroyanagi H, Kuroiwa A et al (1998) Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. Biochem Biophys Res Commun 246:222–227. https://doi.org/10.1006/bbrc.1998.8546

    Article  PubMed  CAS  Google Scholar 

  33. Chan EYW, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282:25464–25474. https://doi.org/10.1074/jbc.M703663200

    Article  PubMed  CAS  Google Scholar 

  34. Hara T, Takamura A, Kishi C et al (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510. https://doi.org/10.1083/jcb.200712064

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kabeya Y, Kamada Y, Baba M et al (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16:2544–2553. https://doi.org/10.1091/mbc.E04-08-0669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nishimura T, Mizushima N (2017) The ULK complex initiates autophagosome formation at phosphatidylinositol synthase-enriched ER subdomains. Autophagy 13:1795–1796. https://doi.org/10.1080/15548627.2017.1358344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hosokawa N, Sasaki T, Iemura SI et al (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979. https://doi.org/10.4161/auto.5.7.9296

    Article  PubMed  CAS  Google Scholar 

  38. Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662. https://doi.org/10.4161/auto.5.5.8249

    Article  PubMed  CAS  Google Scholar 

  39. Blommaart EFC, Krause U, Schellens JPM et al (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x

    Article  PubMed  CAS  Google Scholar 

  40. Russell RC, Tian Y, Yuan H et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750. https://doi.org/10.1038/ncb2757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae. J Cell Biol 153:519–530. https://doi.org/10.1083/jcb.152.3.519

    Article  Google Scholar 

  42. McKnight NC, Yue Z (2013) Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep 1:231–238. https://doi.org/10.1007/s40139-013-0028-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204. https://doi.org/10.1002/j.1460-2075.1993.tb05867.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dooley HC, Razi M, Polson HEJ et al (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252. https://doi.org/10.1016/j.molcel.2014.05.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Polson HEJ, De Lartigue J, Rigden DJ et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:506–522. https://doi.org/10.4161/auto.6.4.11863

    Article  PubMed  CAS  Google Scholar 

  46. Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393. https://doi.org/10.1038/nature11910

    Article  PubMed  CAS  Google Scholar 

  47. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bjørkøy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zatloukal K, Stumptner C, Fuchsbichler A et al (2002) p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263. https://doi.org/10.1016/S0002-9440(10)64369-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472. https://doi.org/10.1038/nrm4024

    Article  PubMed  CAS  Google Scholar 

  51. Vainshtein A, Grumati P (2020) Selective autophagy by close encounters of the ubiquitin kind. Cells 9:2349. https://doi.org/10.3390/cells9112349

    Article  PubMed Central  CAS  Google Scholar 

  52. Schütter M, Giavalisco P, Brodesser S, Graef M (2020) Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy. Cell 180:135–149. https://doi.org/10.1016/j.cell.2019.12.005

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi Y, He H, Tang Z et al (2018) An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-05254-w

    Article  CAS  Google Scholar 

  54. Hegedus K, Takats S, Kovacs AL, Juhasz G (2013) Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes. Autophagy 9:1642–1646

    Article  PubMed  CAS  Google Scholar 

  55. Jiang P, Nishimura T, Sakamaki Y et al (2014) The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25:1327–1337. https://doi.org/10.1091/mbc.E13-08-0447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Takáts S, Pircs K, Nagy P et al (2014) Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 25:1338–1354. https://doi.org/10.1091/mbc.E13-08-0449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gu Y, Princely Abudu Y, Kumar S et al (2019) Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNARE s. EMBO J 38(22):e101994. https://doi.org/10.15252/embj.2019101994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. McEwan DG, Popovic D, Gubas A et al (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54. https://doi.org/10.1016/j.molcel.2014.11.006

    Article  PubMed  CAS  Google Scholar 

  59. Tsuboyama K, Koyama-Honda I, Sakamaki Y et al (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354:1036–1041. https://doi.org/10.1126/science.aaf6136

    Article  PubMed  CAS  Google Scholar 

  60. Ding WX, Ni HM, Gao W et al (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524. https://doi.org/10.2353/ajpath.2007.070188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Menzies FM, Fleming A, Caricasole A et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034

    Article  PubMed  CAS  Google Scholar 

  62. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  PubMed  CAS  Google Scholar 

  64. Eskelinen EL (2019) Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol 111:1–10

    Article  PubMed  CAS  Google Scholar 

  65. Deneubourg C, Ramm M, Smith LJ et al (2021) The spectrum of neurodevelopmental neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy. https://doi.org/10.1080/15548627.2021.1943177

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kawabata T, Yoshimori T (2020) Autophagosome biogenesis and human health. Cell Dis 6(1):1–14. https://doi.org/10.1038/s41421-020-0166-y

    Article  CAS  Google Scholar 

  67. Deretic V (2021) Autophagy in inflammation infection and immunometabolism. Immunity 54:437–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Wen X, Yang Y, Klionsky DJ (2021) Moments in autophagy and disease: past and present. Mol Aspects Med 100966. https://doi.org/10.1016/j.mam.2021.100966

  69. Suares A, Medina MV, Coso O (2021) Autophagy in viral development and progression of cancer. Front Oncol 11:147

    Article  Google Scholar 

  70. Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39:211–227

    Article  PubMed  CAS  Google Scholar 

  71. Stamatakou E, Wróbel L, Hill SM et al (2020) Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 6:24. https://doi.org/10.1038/s41421-020-0158-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Han B, He C (2021) Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol Res 166:105428

  73. Gomes LC, Dikic I (2014) Autophagy in antimicrobial immunity. Mol Cell 54:224–233

    Article  PubMed  CAS  Google Scholar 

  74. Ichimiya T, Yamakawa T, Hirano T et al (2020) Autophagy and autophagy-related diseases: a review. Int J Mol Sci 21:1–21

    Article  CAS  Google Scholar 

  75. Carroll B, Dunlop EA (2017) The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J 474:1453–1466

    Article  PubMed  CAS  Google Scholar 

  76. González A, Hall MN, Lin SC, Hardie DG (2020) AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab 31:472–492

    Article  PubMed  CAS  Google Scholar 

  77. Jia J, Abudu YP, Claude-Taupin A et al (2018) Galectins control mTOR in response to endomembrane damage. Mol Cell 70:120–135. https://doi.org/10.1016/j.molcel.2018.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jung CH, Ro SH, Cao J et al (2010) MTOR regulation of autophagy. FEBS Lett 584:1287–1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim YC, Guan KL (2015) MTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hardie DG, Mackintosh RW (1992) AMP-activated protein kinase - an archetypal protein kinase cascade? BioEssays 14:699–704. https://doi.org/10.1002/bies.950141011

    Article  PubMed  CAS  Google Scholar 

  81. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135. https://doi.org/10.1038/nrm.2017.95

    Article  PubMed  CAS  Google Scholar 

  82. Grahame Hardie D, Carling D, Halford N (1994) Roles of the snf1/rkin1/amp-activated protein kinase family in the response to environmental and nutritional stress. Semin Cell Dev Biol 5:409–416. https://doi.org/10.1006/scel.1994.1048

    Article  Google Scholar 

  83. Davies SP, Hawley SA, Woods A et al (1994) Purification of the AMP-activated protein kinase on ATP-γ-sepharose and analysis of its subunit structure. Eur J Biochem 223:351–357. https://doi.org/10.1111/j.1432-1033.1994.tb19001.x

    Article  PubMed  CAS  Google Scholar 

  84. Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420. https://doi.org/10.2741/2854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180. https://doi.org/10.1126/science.3526554

    Article  PubMed  CAS  Google Scholar 

  86. Hawley SA, Davison M, Woods A et al (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887. https://doi.org/10.1074/jbc.271.44.27879

    Article  PubMed  CAS  Google Scholar 

  87. Hawley SA, Selbert MA, Goldstein EG et al (1995) 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade via three independent mechanisms. J Biol Chem 270:27186–27191. https://doi.org/10.1074/jbc.270.45.27186

    Article  PubMed  CAS  Google Scholar 

  88. Polekhina G, Gupta A, Michell BJ et al (2003) AMPK β subunit targets metabolic stress sensing to glycogen. Curr Biol 13:867–871. https://doi.org/10.1016/S0960-9822(03)00292-6

    Article  PubMed  CAS  Google Scholar 

  89. Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120. https://doi.org/10.1016/S0014-5793(03)00560-X

    Article  PubMed  CAS  Google Scholar 

  90. Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27:299–313

    Article  PubMed  CAS  Google Scholar 

  91. Xiao B, Heath R, Saiu P et al (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500. https://doi.org/10.1038/nature06161

    Article  PubMed  CAS  Google Scholar 

  92. Kemp BE, Oakhill JS, Scott JW (2007) AMPK structure and regulation from three angles. Structure 15:1161–1163

    Article  PubMed  CAS  Google Scholar 

  93. Gu X, Yan Y, Novick SJ et al (2017) Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. J Biol Chem 292:12653–12666. https://doi.org/10.1074/jbc.M117.793018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36:470–477. https://doi.org/10.1016/j.tibs.2011.06.004

    Article  PubMed  CAS  Google Scholar 

  95. Hardie DG (2018) Keeping the home fires burning † : AMP-activated protein kinase. J R Soc Interface 15(138):20170774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Ferrer A, Caelles C, Massot N, Hegardt FG (1985) Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem Biophys Res Commun 132:497–504. https://doi.org/10.1016/0006-291X(85)91161-1

    Article  PubMed  CAS  Google Scholar 

  97. Carling D (2004) The AMP-activated protein kinase cascade - a unifying system for energy control. Trends Biochem Sci 29:18–24. https://doi.org/10.1016/j.tibs.2003.11.005

    Article  PubMed  CAS  Google Scholar 

  98. Salt I, Celler JW, Hawley SA et al (1998) AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem J 334:177–187. https://doi.org/10.1042/bj3340177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Edelman AM, Bluementhal D, Krebs EG (1987) Protein serine/threonine kinases. Annu Rev Biochem 56:567–613

    Article  PubMed  CAS  Google Scholar 

  100. Chen L, Wang J, Zhang YY et al (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat Struct Mol Biol 19:716–718. https://doi.org/10.1038/nsmb.2319

    Article  PubMed  CAS  Google Scholar 

  101. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Fullerton MD, Galic S, Marcinko K et al (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19:1649–1654. https://doi.org/10.1038/nm.3372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sato R, Goldstein JL, Brown MS (1993) Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc Natl Acad Sci USA 90:9261–9265. https://doi.org/10.1073/pnas.90.20.9261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. https://doi.org/10.1038/nrm3311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Saxton RA, Sabatini DM (2017) mTOR signaling in growth metabolism and disease. Cell 168:960–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590. https://doi.org/10.1016/S0092-8674(03)00929-2

    Article  PubMed  CAS  Google Scholar 

  108. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. https://doi.org/10.1016/j.molcel.2008.03.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461. https://doi.org/10.1126/science.1196371

    Article  PubMed  CAS  Google Scholar 

  111. Jung CH, Seo M, Otto NM, Kim DH (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 7:1212–1221. https://doi.org/10.4161/auto.7.10.16660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Roach PJ (2011) AMPK -> ULK1 -> Autophagy. Mol Cell Biol 31:3082–3084. https://doi.org/10.1128/mcb.05565-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Nazarko VY, Zhong Q (2013) ULK1 targets Beclin-1 in autophagy. Nat Cell Biol 15:727–728. https://doi.org/10.1038/ncb2797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kim J, Kim YC, Fang C et al (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303. https://doi.org/10.1016/j.cell.2012.12.016

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhang D, Wang W, Sun X et al (2016) AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12:1447–1459. https://doi.org/10.1080/15548627.2016.1185576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939. https://doi.org/10.1016/j.cell.2005.07.002

    Article  PubMed  CAS  Google Scholar 

  117. Zhang SM, Shang ZF, Zhou PK (2015) Autophagy as the effector and player in DNA damage response of cells to genotoxicants. Toxicol Res 4:613–622. https://doi.org/10.1039/c5tx00043b

    Article  CAS  Google Scholar 

  118. Puustinen P, Keldsbo A, Corcelle-Termeau E et al (2020) DNA-dependent protein kinase regulates lysosomal AMP-dependent protein kinase activation and autophagy. Autophagy 16:1871–1888. https://doi.org/10.1080/15548627.2019.1710430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388

    Article  PubMed  CAS  Google Scholar 

  120. Hawley SA, Boudeau J, Reid JL et al (2003) Complexes between the LKB1 tumor suppressor STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:1–16

    Article  Google Scholar 

  121. Shaw RJ, Kosmatka M, Bardeesy N et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335. https://doi.org/10.1073/pnas.0308061100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Woods A, Johnstone SR, Dickerson K et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008. https://doi.org/10.1016/j.cub.2003.10.031

    Article  PubMed  CAS  Google Scholar 

  123. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19. https://doi.org/10.1016/j.cmet.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  124. Hurley RL, Anderson KA, Franzone JM et al (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066. https://doi.org/10.1074/jbc.M503824200

    Article  PubMed  CAS  Google Scholar 

  125. Woods A, Dickerson K, Heath R et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33. https://doi.org/10.1016/j.cmet.2005.06.005

    Article  PubMed  CAS  Google Scholar 

  126. Herrero-Martín G, Høyer-Hansen M, García-García C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685. https://doi.org/10.1038/emboj.2009.8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Neumann D (2018) Is TAK1 a direct upstream kinase of AMPK? Int J Mol Sci 19:2412. https://doi.org/10.3390/ijms19082412

    Article  PubMed Central  CAS  Google Scholar 

  128. Hemminki A, Markie D, Tomlinson I et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184–187. https://doi.org/10.1038/34432

    Article  PubMed  CAS  Google Scholar 

  129. Jenne DE, Reimann H, Nezu JI et al (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18:38–43

    Article  PubMed  CAS  Google Scholar 

  130. Sanchez-Cespedes M, Parrella P, Esteller M et al (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62:3659–3662

    PubMed  CAS  Google Scholar 

  131. Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways RID C-9450-2011. Annu Rev Biochem 75:137–163. https://doi.org/10.1146/annurev.biochem.75.103004.142702

    Article  PubMed  CAS  Google Scholar 

  132. Sakamoto K, McCarthy A, Smith D et al (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820. https://doi.org/10.1038/sj.emboj.7600667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sakamoto K, Zarrinpashneh E, Budas GR et al (2006) Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. Am J Physiol Endocrinol Metab 290:E780–E788. https://doi.org/10.1152/ajpendo.00443.2005

    Article  PubMed  CAS  Google Scholar 

  134. Hanson PI, Schulman H (1992) Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 61:559–601

    Article  PubMed  CAS  Google Scholar 

  135. Hong SP, Leiper FC, Woods A et al (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100:8839–8843. https://doi.org/10.1073/pnas.1533136100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Sutherland CM, Hawley SA, McCartney RR et al (2003) Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 13:1299–1305. https://doi.org/10.1016/S0960-9822(03)00459-7

    Article  PubMed  CAS  Google Scholar 

  137. Høyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium calmodulin-dependent kinase kinase -β and Bcl-2. Mol Cell 25:193–205. https://doi.org/10.1016/j.molcel.2006.12.009

    Article  PubMed  CAS  Google Scholar 

  138. Witters LA, Kemp BE, Means AR (2006) Chutes and ladders: the search for protein kinases that act on AMPK. Trends Biochem Sci 31:13–16

    Article  PubMed  CAS  Google Scholar 

  139. Green MF, Anderson KA, Means AR (2011) Characterization of the CaMKKβ-AMPK signaling complex. Cell Signal 23:2005–2012. https://doi.org/10.1016/j.cellsig.2011.07.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tamás P, Hawley SA, Clarke RG et al (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203:1665–1670. https://doi.org/10.1084/jem.20052469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Stahmann N, Woods A, Carling D, Heller R (2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase β. Mol Cell Biol 26:5933–5945. https://doi.org/10.1128/mcb.00383-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lin C, Blessing AM, Pulliam TL et al (2021) Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene 40:1690–1705. https://doi.org/10.1038/s41388-021-01658-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Tokumitsu H, Enslen H, Soderling TR (1995) Characterization of a Ca2+/calmodulin-dependent protein kinase cascade: molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J Biol Chem 270:19320–19324

    Article  PubMed  CAS  Google Scholar 

  144. Anderson KA, Means RL, Huang QH et al (1999) Components of a calmodulin-dependent protein kinase cascade: molecular cloning functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase β. J Biol Chem 273:31880–31889. https://doi.org/10.1074/jbc.273.48.31880

    Article  Google Scholar 

  145. Kukimoto-Niino M, Yoshikawa S, Takagi T et al (2011) Crystal structure of the Ca2+/calmodulin-dependent protein kinase kinase in complex with the inhibitor STO-609. J Biol Chem 286:22570–22579. https://doi.org/10.1074/jbc.M111.251710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Leclerc I, Rutter GA (2004) AMP-activated protein kinase: a new β-cell glucose sensor Regulation by amino acids and calcium ions. Diabetes 53:S67–S74. https://doi.org/10.2337/diabetes.53.suppl_3.S67

    Article  PubMed  CAS  Google Scholar 

  147. Racioppi L, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 287:31658–31665. https://doi.org/10.1074/jbc.R112.356485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Najar MA, Rex DAB, Modi PK et al (2020) A complete map of the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J Cell Commun Signal 15:283–290. https://doi.org/10.1007/S12079-020-00592-1

    Article  PubMed  PubMed Central  Google Scholar 

  149. Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  PubMed  CAS  Google Scholar 

  150. Minokoshi Y, Alquier T, Furukawa H et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574. https://doi.org/10.1038/nature02440

    Article  PubMed  CAS  Google Scholar 

  151. Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake *. J Biol Chem 279:12005–12008. https://doi.org/10.1074/JBC.C300557200

    Article  PubMed  CAS  Google Scholar 

  152. Anderson KA, Ribar TJ, Lin F et al (2008) Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 7:377–388

    Article  PubMed  CAS  Google Scholar 

  153. Wu WN, Wu PF, Zhou J et al (2013) Orexin-A activates hypothalamic AMP-activated protein kinase signaling through a Ca2+-dependent mechanism involving voltage-gated L-type calcium channel. Mol Pharmacol 84:879–887. https://doi.org/10.1124/mol.113.086744

    Article  CAS  Google Scholar 

  154. Marcelo KL, Means AR, York B (2016) The Ca2+/calmodulin/CaMKK2 axis: nature’s metabolic CaMshaft. Trends Endocrinol Metab 27:706–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Mairet-Coello G, Courchet J, Pieraut S et al (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78:94–108. https://doi.org/10.1016/j.neuron.2013.02.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lee A, Kondapalli C, Virga DM et al (2019) Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. bioRxiv 637199. https://doi.org/10.1101/637199

Download references

Acknowledgements

We thank Lizanne Oliveira for her critical reading and editing of the manuscript.

Funding

The study in the laboratory is supported by funding from the Department of Biotechnology, Department of Science and Technology, Government of India, (BT/PR27451/BRB/10/1655/2018 and BT/PR32331/BRB/10/1774/2019), and intramural funding from National Centre for Cell Science. The financial support from the Department of Biotechnology, Ministry of Science and Technology, Government of India, to RS, was through a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RS: writing original draft, review, and editing; JJ: writing, review, and editing.

Corresponding author

Correspondence to Jomon Joseph.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, R., Joseph, J. AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med 99, 1539–1551 (2021). https://doi.org/10.1007/s00109-021-02125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02125-8

Keywords

Navigation