Skip to main content
Log in

Rhizosphere influence on microbial functions: consequence for temperature sensitivity of soil organic matter decomposition at early stage of plant growth

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Accurate predictions of soil carbon (C) feedbacks to climate change depend on an improved understanding of temperature sensitivity (Q10) of soil organic matter (SOM) decomposition. Although rhizosphere processes play a critical role in SOM decomposition, the rhizosphere effects on Q10 and their underlying microbial mechanisms remain unclear.

Methods

Natural abundance approach was used to measure the rhizosphere priming effect (RPE) of maize under two temperature regimes in a 50-day pot experiment. We further determined the impact of rhizosphere process on the Q10 of SOM decomposition. Enzymatic kinetics, microbial growth rate, as well as 13C-phospholipid fatty acid (13C-PLFA) biomarkers were identified to evaluate the responses of microbial activity.

Results

Warming relative to ambient increased the plant-derived C input, stimulated microbial growth rate, and enzyme activities by 87%, 23%, and 7–18%, respectively. Consequently, warming increased the RPE of maize up to 1-folds, and further caused a larger net C loss as compared to ambient after 50 days of transplanting. Gram negative bacteria and actinobacteria were important groups controlling the RPE, which was supported by the positive correlations between RPE and the abundance of gram negative and actinobacteria. Furthermore, we concluded a literature review and the results were consistent with our case study, where the presence of roots increased the temperature sensitivity of SOM decomposition by 0.17–0.56. This was because rhizodeposition activated microorganisms which produce more enzymes and increase SOM-derived substrate availability. This indicates that planted soils face higher risks of C emissions under future climate warming.

Conclusions

Overall, root-soil interactions via RPE play a pivotal role in determining the temperature sensitivity of SOM decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used for this study are freely available from the corresponding author upon reasonable request.

References

  • Bader NE, Cheng W (2007) Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration. Soil Biol Biochem 39:600–606

    Article  CAS  Google Scholar 

  • Basile-Doelsch I, Balesdent J, Pellerin S (2020) Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences 17:5223–5242

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Blagodatskaya Е, Blagodatsky S, Khomyakov N, Myachina O, Kuzyakov Y (2016) Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Sci Rep 6:1–11

    Article  Google Scholar 

  • Carrillo Y, Dijkstra FA, Pendall E, Carrillo Y, Dijkstra FA, Pendall E, LeCain D, Tucker C (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117:229–240

    Article  CAS  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Change Biol 20:2356–2367

    Article  Google Scholar 

  • Chen H, Zou J, Cui J, Nie M, Fang C (2018) Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol Biochem 120:24–27

    Article  CAS  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG et al (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201:31–44

    Article  CAS  PubMed  Google Scholar 

  • Conant RT, Drijber RA, Haddix ML, Parton WJ et al (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol 14:868–877

    Article  Google Scholar 

  • Cui J, Zhu Z, Xu X, Liu S, Jones DL, Kuzyakov Y, Cui J, Zhu Z, Xu X, Liu S, Jones DL, Kuzyakov Y, Shibistova O, Wu J, Ge T (2020) Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming. Soil Biol Biochem 142:107720

    Article  CAS  Google Scholar 

  • Cui H, Mo C, Chen P, Lan R, He C, Lin J, Cui H, Mo C, Chen P, Lan R, He C, Lin J, Jiang Z, Yang J (2023) Impact of rhizosphere priming on soil organic carbon dynamics: insights from the perspective of carbon fractions. Appl Soil Ecol 189:104982

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Fanin N, Alavoine G, Bertrand I (2020) Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma 377:114576

    Article  CAS  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Change Biol 21:2082–2094

    Article  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96

    Article  CAS  Google Scholar 

  • Frostegård Ã, Bååth E, Tunlio A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralization in the presence of labile carbon. Soil Biol Biochem 43:1705–1713

    Article  CAS  Google Scholar 

  • Geyer KM, Dijkstra P, Sinsabaugh R, Frey SD (2019) Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol Biochem 128:79–88

    Article  CAS  Google Scholar 

  • Ghee C, Neilson R, Hallett PD, Robinson D, Paterson E (2013) Priming of soil organic matter mineralisation is intrinsically insensitive to temperature. Soil Biol Biochem 66:20–28

    Article  CAS  Google Scholar 

  • Huo C, Luo Y, Cheng W (2017) Rhizosphere priming effect: a meta-analysis. Soil Biol Biochem 111:78–84

    Article  CAS  Google Scholar 

  • Hursh A, Ballantyne A, Cooper L, Maneta M, Kimball J, Watts J (2017) The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob Change Biol 23:2090–2103

    Article  Google Scholar 

  • Jiang J, Guo S, Zhang Y, Liu Q, Wang R, Jiang J, Guo S, Zhang Y, Liu Q, Wang R, Wang Z, Li N, Li R (2015) Changes in temperature sensitivity of soil respiration in the phases of a three-year crop rotation system. Soil Tillage Res 150:139–146

    Article  Google Scholar 

  • Joergensen RG, Wichern F (2018) Alive and kicking: why dormant soil microorganisms matter. Soil Biol Biochem 116:419–430

    Article  CAS  Google Scholar 

  • Kelly C, Haddix ML, Byrne PF, Cotrufo MF, Kelly C, Haddix ML, Byrne PF, Cotrufo MF, Schipanski M, Kallenbach CM, Wallenstein MD, Fonte SJ (2022) Divergent belowground carbon allocation patterns of winter wheat shape rhizosphere microbial communities and nitrogen cycling activities. Soil Biol Biochem 165:108518

    Article  CAS  Google Scholar 

  • Kramer C, Gleixner G (2006) Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol Biochem 38:3267–3278

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Bol R (2006) Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biol Biochem 38:747–758

    Article  CAS  Google Scholar 

  • Li J, Pendall E, Dijkstra FA, Nie M (2020) Root effects on the temperature sensitivity of soil respiration depend on climatic condition and ecosystem type. Soil Tillage Res 199:104574

    Article  Google Scholar 

  • Li Y, Zhang J, Li E, Miao Y, Han S, Li Y, Zhang J, Li E, Miao Y, Han S, Liu Y, Liu Y, Zhao C, Zhang Y (2022) Changes in carbon inputs affect soil respiration and its temperature sensitivity in a broadleaved forest in central China. CATENA 213:106197

    Article  CAS  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25:3578–3590

  • Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

    Article  CAS  PubMed  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • Moinet GY, Hunt JE, Kirschbaum MU, Morcom CP, Midwood AJ, Millard P (2018) The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol Biochem 116:333–339

    Article  CAS  Google Scholar 

  • Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016) Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol Biochem 93:1–7

    Article  CAS  Google Scholar 

  • Nayab G, Zhou J, Jia R, Lv Y, Yang Y, Brown RW, Zang H, Jones D, Zeng Z (2022) Climate warming masks the negative effect of microplastics on plant-soil health in a silt loam soil. Geoderma 425

  • Nottingham AT, Meir P, Velasquez E, Turner BL (2020) Soil carbon loss by experimental warming in a tropical forest. Nature 584:234–237

    Article  CAS  PubMed  Google Scholar 

  • Panikov NS, Sizova MV (1996) A kinetic method for estimating the biomass of microbial functional groups in soil. J Microbiol Methods 24:219–230

    Article  Google Scholar 

  • Pausch J, Tian J, Riederer M, Kuzyakov Y (2013) Estimation of rhizodeposition at field scale: upscaling of a 14 C labeling study. Plant Soil 364:273–285

    Article  CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Piao S, Wang T, Sun J, Shen Z (2009) Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol Biochem 41:1008–1014

    Article  CAS  Google Scholar 

  • Post H, Hendricks Franssen HJ, Han X, Baatz R, Montzka C, Schmidt M, Vereecken H (2018) Evaluation and uncertainty analysis of regional-scale CLM4. 5 net carbon flux estimates. Biogeosciences 15:187–208

    Article  CAS  Google Scholar 

  • Sawada K, Inagaki Y, Toyota K (2021) Priming effects induced by C and N additions in relation to microbial biomass turnover in japanese forest soils. Appl Soil Ecol 162:103884

    Article  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VdRd, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:1–17

    Article  Google Scholar 

  • Sun T, Zhou J, Shi L, Feng W, Dippold MA, Sun T, Zhou J, Shi L, Feng W, Dippold MA, Zang H, Kurganova I, de Gerenyu VL, Kalinina O, Giani L, Kuzyakov Y (2022) Microbial growth rates, carbon use efficiency and enzyme activities during post-agricultural soil restoration. CATENA 214:106226

    Article  CAS  Google Scholar 

  • Tavi NM, Martikainen PJ, Lokko K, Kontro M, Wild B, Richter A, Biasi C (2013) Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biol Biochem 58:207–215

    Article  CAS  Google Scholar 

  • Thiessen S, Gleixner G, Wutzler T, Reichstein M (2013) Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-An incubation study. Soil Biol Biochem 57:739–748

    Article  CAS  Google Scholar 

  • Tucker CL, Bell J, Pendall E, Ogle K (2013) Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob Change Biol 19:252–263

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138:275–284

    Article  PubMed  Google Scholar 

  • Wang Q, Wang Y, Wang S, He T, Liu L (2014) Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers. Soil Biology and Biochemistry 72:145–151

  • Wang X, Wang C, Cotrufo MF, Sun L, Jiang P, Liu Z, Bai E (2020) Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Glob Change Biol 26:5277–5289

    Article  Google Scholar 

  • Wang J, Quan Q, Chen W, Tian D, Ciais P, Crowther TW, Wang J, Quan Q, Chen W, Tian D, Ciais P, Crowther TW, Mack MC, Poulter B, Tian H, Luo Y, Wen X, Yu G, Niu S (2021) Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow. Sci Total Environ 769:144559

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu WX, Liu W, Lu HH et al (2009) Use of 13 C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67:93–102

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wu H, Wang Z, Semenov MV, Ye J, Yang S, Wu H, Wang Z, Semenov MV, Ye Ji, Yin L, Wang X, Kravchenko I, Semenov V, Kuzyakov Y, Jiang Y, Li H (2022) Linkages between the temperature sensitivity of soil respiration and microbial life strategy are dependent on sampling season. Soil Biol Biochem 172:108758

    Article  CAS  Google Scholar 

  • Zhao X, Tian P, Liu S, Sun Z, Zeng Z, Wang Q (2022) Cunninghamia lanceolata and understory ferns had positive rhizosphere effects on the temperature sensitivity of soil microbial respiration in a subtropical forest. Geoderma 408:115593

    Article  CAS  Google Scholar 

  • Zhou J, Wen Y, Shi L, Marshall MR, Kuzyakov Y, Blagodatskaya E, Zang H (2021) Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biol Biochem 152:108069

    Article  CAS  Google Scholar 

  • Zhou J, Li Z, Shi L, Kuzyakov Y, Pausch J (2022a) Microbial utilization of photosynthesized carbon depends on land-use. Geoderma 428

  • Zhou J, Wen Y, Rillig MC, Shi L, Dippold MA et al (2023a) Restricted power: can microorganisms maintain soil organic matter stability under warming exceeding 2 degrees? Global Ecol Biogeography 32:919–930

    Article  Google Scholar 

  • Zhou J, Wen Y, Razavi BS, Loeppmann S, Marshall MR, Zhou J, Wen Y, Razavi BS, Loeppmann S, Marshall MR, Zang H, Kuzyakov Y, Zeng Z, Dippold MA, Blagodatskaya E (2023b) Labile substrate input weakens the memory effect of soil microbial functions under global warming. CATENA 232:107381

    Article  CAS  Google Scholar 

  • Zhu B, Cheng W (2011a) Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Glob Change Biol 17:2172–2183

    Article  Google Scholar 

  • Zhu B, Cheng W (2011b) 13 C isotope fractionation during rhizosphere respiration of C3 and C4 plants. Plant Soil 342:277–287

    Article  CAS  Google Scholar 

  • Zhou J, Zang H, Loeppmann S, Gube M, Kuzyakov Y, Pausch J (2020) Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biology and Biochemistry 140

  • Zhou J, Wen Y, Cheng H, Zang H, Jones DL (2022b) Simazine degradation in agroecosystems: Will it be affected by the type and amount of microplastic pollution? Land Degradation & Development 33:1128–1136

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (42207388). The authors would like to thank Karin Schmidt for laboratory assistance and Gabriele Lehmann and Rainer Schulz from the Laboratory for Radioisotopes (LARI), University of Goettingen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhou or Lingling Shi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Tida Ge.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 97.8 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, C., Shi, L. et al. Rhizosphere influence on microbial functions: consequence for temperature sensitivity of soil organic matter decomposition at early stage of plant growth. Plant Soil 494, 95–109 (2024). https://doi.org/10.1007/s11104-023-06258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06258-2

Keywords

Navigation