Skip to main content

Advertisement

Log in

Physiological and molecular advances in magnesium nutrition of plants

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Mg is a macronutrient for plant growth. Mg deficiency has become an important limiting factor in intensive agricultural production, resulting in reduced crop yield and quality. Given that Mg is also essential for human and animals’ diets, Mg nutrition in plants has become an important issue not only for food security but also for human health.

Scope

We review recent progress in physiological and molecular mechanisms underlying Mg biological functionality, as well as Mg transport and Mg deficiency symptoms in plants.

Conclusions

As both a structural component and a regulatory factor, Mg helps plants achieve higher photosynthetic efficiency, nitrogen use efficiency and stress resistance. Plants need a certain range of Mg concentration for their growth, and a number of key genes responsible for Mg uptake, translocation and detoxification have been identified. Despite its functional importance, basic researches on Mg nutrition are still scarce. A deeper investigation of the genetic and molecular mechanisms employed in Mg nutrition will help to improve crop yield and intensify Mg application in the field. Developing more approaches to enhance Mg concentration in crop edible parts is urgently required for human diet and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source for nodule growth and N fixation, and subsequently improves N utilization. Abiotic stress alleviator: Mg in plants is able to mitigate abiotic stresses (Al toxicity, salt stress, heat stress etc.) through antagonistic competition for cation binding sites in both apoplast and symplast, enhancing anti-oxidant systems, and modulating protein activity and gene expression. Plant-microbe coordinator: 1, Elevated Mg level in plant cytoplasm activates the defense-related hormone signaling pathways and ROS production, inhibiting the propagation of pathogens. 2, The invasion of pathogens increases the apoplastic Mg content of plant cells, which in turn promotes the pathogen survival and pathogenicity

Fig. 2

Similar content being viewed by others

References

  • Aldon D, Mbengue M, Mazars C, Galaud JP (2018) Calcium signalling in plant biotic interactions. Int J Mol Sci 19:665

    Article  PubMed Central  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Andreo CS, Gonzalez DH, Iglesias AA (1987) Higher plant phosphoenolpyruvate carboxylase: structure and regulation. FEBS Lett 213:1–8

    Article  CAS  Google Scholar 

  • Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4:377–394

    Article  CAS  PubMed  Google Scholar 

  • Billard V, Maillard A, Coquet L, Jouenne T, Cruz F, Garcia-Mina JM, Yvin JC, Ourry A, Etienne P (2016) Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus. Plant Physiol Biochem 107:337–343

    Article  CAS  PubMed  Google Scholar 

  • Boaretto RM, Hippler FWR, Ferreira GA, Azevedo RA, Quaggio JA, Mattos D (2020) The possible role of extra magnesium and nitrogen supply to alleviate stress caused by high irradiation and temperature in lemon trees. Plant Soil 457:57–70

    Article  CAS  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2013) Low-pH and aluminum resistance in Arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. Plant Cell Physiol 54:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Yazici AM (2010) Magnesium: a forgotten element in crop production. Better Crops 94:23–25

    Google Scholar 

  • Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell Environ 38:1817–1832

    Article  CAS  Google Scholar 

  • Castro CD, Oliveira Junior AD, Oliveira FAD, Firmano RF, Zancanaro L, Klepker D, Foloni JSS, Brighenti AM, Benites VDM (2021) Magnesium: management for the nutritional balance of soybean. International Standard Serial Number 438:2176–2937

    Google Scholar 

  • Chen HB, Fan XL (2018) Effects of magnesium remobilization and allocation on banana plant growth. J Plant Nutr 41:1312–1320

    Article  CAS  Google Scholar 

  • Chen ZC, Ma JF (2013) Magnesium transporters and their role in Al tolerance in plants. Plant Soil 368:51–56

    Article  CAS  Google Scholar 

  • Chen J, Li LG, Liu ZH, Yuan YJ, Guo LL, Mao DD, Tian LF, Chen LB, Luan S, Li DP (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19:887–898

    Article  PubMed  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Kan Q, Wang P, Yu W, Yu Y, Zhao Y, Yu Y, Li K, Chen L (2015) Phosphorylation and interaction with the 14-3-3 protein of the plasma membrane H+-ATPase are involved in the regulation of magnesium-mediated increases in aluminum-induced citrate exudation in broad bean (Vicia faba. L). Plant Cell Physiol 56:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Chen ZC, Yamaji N, Horie T, Che J, Li J, An G, Ma JF (2017) A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol 174:1837–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZC, Peng WT, Li J, Liao H (2018) Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol 74:142–152

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu X, Lu Z, Zhang W, Yang J, Hou Y, Wang X, Zhou S, Li Y, Wu L (2020) Carbon footprint of a typical pomelo production region in China based on farm survey data. J Clean Prod 277: 124041

  • Cheval C, Aldon D, Galaud J-P, Ranty B (2013) Calcium/calmodulin-mediated regulation of plant immunity. Biochem Biophys Acta 1833:1766–1771

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury RS (2017) Effect of calcium, magnesium, sulphur, zinc and boron on growth and yield of potato (cv. Kufri Jyoti). Horticulture. Uttar Banga Krishi Viswavidyalaya, West Bengal

  • Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh RA, Gilliham M (2011) Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol 190:583–594

    Article  CAS  PubMed  Google Scholar 

  • Cowan J (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15:225–235

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Lee JY (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nature Plants 2:1–9

    Article  Google Scholar 

  • De Melo JRF, Gutsch A, Caluwé TD, Leloup J-C, Gonze D, Hermans C, Webb AA, Verbruggen N (2021) Magnesium maintains the length of the circadian period in Arabidopsis. Plant Physiol 185:519–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng W, Luo K, Li D, Zheng X, Wei X, Smith W, Thammina C, Lu L, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd J, Millar A, AAR W, (2005) Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M (2014) The circadian regulation of photosynthesis. Photosynth Res 119:181–190

    Article  CAS  PubMed  Google Scholar 

  • Drummond R, Tutone A, Li YC, Gardner R (2006) A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Sci 170:78–89

    Article  CAS  Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Shanghai, China

  • Edmeades DC (2004) The magnesium requirements of pastures in New Zealand: A review. N Z J Agric Res 47:363–380

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth SJ, Alam P, Alyemeni MN, Ahmad P (2018) Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.). Front Microbiol 9: 1000

  • Elmer W, Datnoff L (2014) Mineral nutrition and suppression of plant disease. Encyclopedia of Agriculture and Food Systems 4:231–244

    Article  Google Scholar 

  • Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M (2016) Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant 38:145–155

    Article  Google Scholar 

  • Faust F, Schubert S (2016) Protein synthesis is the most sensitive process when potassium is substituted by sodium in the nutrition of sugar beet (Beta vulgaris). Plant Physiol Biochem 107:237–247

    Article  CAS  PubMed  Google Scholar 

  • Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, Larrondo LF, Hoyle NP, O’Neill JS, van Ooijen G (2016) Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 532:375–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Nagao H, Li B, Sotta N, Shikanai Y, Yamaguchi K, Shigenobu S, Kamiya T, Fujiwara T (2020) An SMU splicing factor complex within nuclear speckles contributes to magnesium homeostasis in Arabidopsis. Plant Physiol 184:428–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippi MC, Prabhu AS (1998) Relationship between panicle blast severity and mineral nutrient content of plant tissue in upland rice. J Plant Nutr 21:1577–1587

    Article  CAS  Google Scholar 

  • Fujikawa I, Takehara Y, Ota M, Imada K, Sasaki K, Kajihara H, Sakai S, Jogaiah S, Ito S-i (2021) Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. J Biotechnol 325:100–108

    Article  CAS  PubMed  Google Scholar 

  • Gebert M, Meschenmoser K, Svidova S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A Root-Expressed Magnesium Transporter of the MRS2/MGT Gene Family in Arabidopsis thaliana Allows for Growth in Low-Mg2+ Environments. Plant Cell 21:4018–4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gout E, Rébeillé F, Douce R, Bligny R (2014) Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci 111:E4560–E4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368:5–21

    Article  CAS  Google Scholar 

  • Graschopf A, Stadler JA, Hoellerer MK, Eder S, Sieghardt M, Kohlwein SD, Schweyen RJ (2001) The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J Biol Chem 276:16216–16222

    Article  CAS  PubMed  Google Scholar 

  • Grigore MN, Boscaiu M, Llinares J, Vicente O (2012) Mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40:58–66

    Article  CAS  Google Scholar 

  • Grzebisz W (2013) Crop response to magnesium fertilization as affected by nitrogen supply. Plant Soil 368:23–39

    Article  CAS  Google Scholar 

  • Grzebisz W, Przygocka-Cyna K, Szczepaniak W, Diatta J, Potarzycki J (2010) Magnesium as a nutritional tool of nitrogen efficient management-plant production and environment. Journal of Elementology 15:771–788

    Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsic T, Rengel Z (2010) The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiol Plant 139:303–312

    CAS  PubMed  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: An urgent problem. The Crop Journal 4:83–91

    Article  Google Scholar 

  • Guo Y, Chen Y, Searchinger TD, Zhou M, Pan D, Yang J, Wu L, Cui Z, Zhang W, Zhang F (2020) Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food 1:648–658

    Article  Google Scholar 

  • Guo W, Chen S, Hussain N, Cong Y, Liang Z, Chen K (2015) Magnesium stress signaling in plant: Just a beginning. Plant Signal Behav 10:e992287.

  • Hailes K, Aitken R, Menzies N (1997) Magnesium in tropical and subtropical soils from north-eastern Australia. I. Magnesium fractions and interrelationships with soil properties. Soil Res 35:615–628

    Article  CAS  Google Scholar 

  • Hasni I, Msilini N, Hamdani S, Tajmir-Riahi HA, Carpentier R (2015) Characterization of the structural changes and photochemical activity of photosystem I under Al3+ effect. J Photochem Photobiol, B 149:292–299

    Article  CAS  Google Scholar 

  • Hazra S, Henderson JN, Liles K, Hilton MT, Wachter RM (2015) Regulation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase. J Biol Chem 290:24222–24236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffer P, Prud’homme M (2016) Global nitrogen fertilizer demand and supply: Trend, current level and outlook. International Fertilizer Association, Paris, France

  • Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Conn SJ, Chen J, Xiao Q, Verbruggen N (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics 5:1170–1183

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+and Ca2+ ions. Plant Physiol 156:1493–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5:1–18

    Article  Google Scholar 

  • Huang J, Yang G (2017) Understanding recent challenges and new food policy in China. Glob Food Sec 12:119–126

    Article  Google Scholar 

  • Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  PubMed  Google Scholar 

  • Huber DM, Jones JB (2013) The role of magnesium in plant disease. Plant Soil 368:73–85

    Article  CAS  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL (2015) Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaghdani SJ, Jahns P, Tränkner M (2021) Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Sci 302: 110751

  • Jezek M, Geilfus CM, Mühling KH (2015) Glutamine synthetase activity in leaves of Zea mays L. as influenced by magnesium status. Planta 242:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Jones JB, Huber DM (2007) Magnesium and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Society, Saint Paul, Minnesota, America

  • Kai Y, Matsumura H, Izui K (2003) Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334

    Article  CAS  PubMed  Google Scholar 

  • Khater M, de la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi NI, Ogura T, Takagi K, Sugita R, Suzuki H, Iwata R, Nakanishi TM, Tanoi K (2018) Magnesium deficiency damages the youngest mature leaf in rice through tissue-specific iron toxicity. Plant Soil 428:137–152

    Article  CAS  Google Scholar 

  • Kocourková D, Krčková Z, Pejchar P, Kroumanová K, Podmanicka T, Daněk M, Martinec J (2020) Phospholipase Dα1 mediates the high-Mg2+ stress response partially through regulation of K+ homeostasis. Plant, Cell Environ 43:2460–2475

    Article  Google Scholar 

  • Li L, Tutone AF, Drummond RS, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. The Plant Cell 13: 2761–2775.Li LG, Sokolov LN, Yang YH, Li DP, Ting J, Pandy GK, Luan S (2008) A Mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol Plant 1:675–685

    Article  Google Scholar 

  • Li J, Huang Y, Tan H, Yang X, Tian LF, Luan S, Chen LB, Li DP (2015) An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Sci 231:212–220

    Article  CAS  PubMed  Google Scholar 

  • Li H, Du H, Huang K, Chen X, Liu T, Gao S, Liu H, Tang Q, Rong T, Zhang S (2016) Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize. Plant Cell Physiol 57:1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang N, Ding J, Liu C, Du H, Huang K, Cao M, Lu Y, Gao S, Zhang S (2017) The maize CorA/MRS2/MGT-type Mg transporter, ZmMGT10, responses to magnesium deficiency and confers low magnesium tolerance in transgenic Arabidopsis. Plant Mol Biol 95:269–278

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu C, Zhou L, Zhao Z, Li Y, Qu M, Huang K, Zhang L, Lu Y, Cao M (2018) Molecular and functional characterization of the magnesium transporter gene ZmMGT12 in maize. Gene 665:167–173

    Article  CAS  PubMed  Google Scholar 

  • Li D, Ma W, Wei J, Mao Y, Chen Q (2020a) Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis. Plant Soil 457:83–95

    Article  CAS  Google Scholar 

  • Li J, Yokosho K, Liu S, Cao HR, Yamaji N, Zhu XG, Liao H, Ma JF, Chen ZC (2020b) Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice. Nature Plants 6:848–859

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Strayer-Scherer A, White J, De La Torre-Roche R, Ritchie L, Colee J, Vallad G, Freeman J, Jones J, Paret M (2019) Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Sci Rep 9:1–10

    Article  Google Scholar 

  • Loide V (2001) Magnesium requirement of Estonian soils. J Agric Sci 12:182–188

    Google Scholar 

  • Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose-1, 5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15:529–536

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist T, Schneider G (1991) Crystal structure of activated ribulose-1, 5-bisphosphate carboxylase complexed with its substrate, ribulose-1, 5-bisphosphate. J Biol Chem 266:12604–12611

    Article  CAS  PubMed  Google Scholar 

  • Maguire ME, Cowan JA (2002) Magnesium chemistry and biochemistry. Biometals 15:203–210

    Article  CAS  PubMed  Google Scholar 

  • Mao DD, Tian LF, Li LG, Chen J, Deng PY, Li DP, Luan S (2008) AtMGT7: An Arabidopsis gene encoding a low-affinity magnesium transporter. J Integr Plant Biol 50:1530–1538

    Article  CAS  PubMed  Google Scholar 

  • Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J, Chen L, Li D, Luan S (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 26:2234–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Adelaide, Australia

    Google Scholar 

  • Martin RB (1988) Bioinorganic chemistry of aluminum. Met Ions Biol Syst 24:2–57

    Google Scholar 

  • Mayland H, Wilkinson S (1989) Soil factors affecting magnesium availability in plant-animal systems: a review. J Anim Sci 67:3437–3444

    Article  CAS  Google Scholar 

  • Mengutay M, Ceylan Y, Kutman UB, Cakmak I (2013) Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 368:57–72

    Article  CAS  Google Scholar 

  • Moreira WR, Bispo WMdS, Rios JA, Debona D, Nascimento CWA, Rodrigues FÁ (2015) Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae. Scientia Agricola 72:328–333

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus C, Geilfus CM, Zörb C, Mühling KH (2013) Transcript expression of Mg-chelatase and H+ -ATPase isogenes in Vicia faba leaves as influenced by root and foliar magnesium supply. Plant Soil 368:41–50

  • Niegowski D, Eshaghi S (2007) The CorA family: structure and function revisited. Cell Mol Life Sci 64:2564–2574

    Article  CAS  PubMed  Google Scholar 

  • Nielsen FH (2016) Importance of plant sources of magnesium for human health. Crop Pasture Sci 66:1259–1264

    Article  Google Scholar 

  • O’Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM (2016) Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgarisand and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant, Cell Environ 39:2172–2184

    Article  Google Scholar 

  • Ogura T, Kobayashi NI, Suzuki H, Ren I, Tanoi K (2018) Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies. Planta 248:745–750

    Article  CAS  PubMed  Google Scholar 

  • Ota M, Imada K, Sasaki K, Kajihara H, Sakai S, Ito S (2019) MgO-induced defence against bacterial wilt disease in Arabidopsis thaliana. Plant Pathol 68:323–333

    Article  CAS  Google Scholar 

  • Peng WT, Zhang LD, Zhou Z, Fu C, Chen ZC, Liao H (2018) Magnesium promotes root nodulation through facilitation of carbohydrate allocation in soybean. Physiol Plant 163:372–385

    Article  CAS  Google Scholar 

  • Peng YY, Liao LL, Liu S, Nie MM, Li J, Zhang LD, Ma JF, Chen ZC (2019) Magnesium deficiency triggers SGR-mediated chlorophyll degradation for magnesium remobilization. Plant Physiol 181:262–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng WT, Qi WL, Nie MM, Xiao YB, Liao H, Chen ZC (2020) Magnesium supports nitrogen uptake through regulating NRT2. 1/2.2 in soybean. Plant Soil 457:97–111

    Article  CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Prasad D, Verma N, Bakshi M, Narayan OP, Singh AK, Dua M, Johri AK (2019) Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol 9:3231

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Reza MH, Shah H, Manjrekar J, Chattoo BB (2016) Magnesium uptake by CorA transporters is essential for growth, development and infection in the rice blast fungus Magnaporthe oryzae. PloS ONE 11:e0159244

  • Ruiz MCM, Hubbard KE, Gardner MJ, Jung HJ, Aubry S, Hotta CT, Mohd-Noh NI, Robertson FC, Hearn TJ, Tsai YC (2018) Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nature Plants 4:690–698

    Article  PubMed Central  Google Scholar 

  • Ryan P, Kinraide T, Kochian L (1994) Al3+-Ca2+ interactions in aluminum rhizotoxicity: I. Inhibition of root growth is not caused by reduction of calcium uptake. Planta 192:98–103

    CAS  Google Scholar 

  • Saito T, Kobayashi NI, Tanoi K, Iwata N, Suzuki H, Iwata R, Nakanishi TM (2013) Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant Cell Physiol 54:1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24: 489–501

    Article  CAS  PubMed  Google Scholar 

  • Senbayram M, Gransee A, Wahle V, Thiel H (2016) Role of magnesium fertilisers in agriculture: plant-soil continuum. Crop Pasture Sci 66:1219–1229

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:307–321

    Article  Google Scholar 

  • Shaul O, Hilgemann DW, De-Almeida-Engler J, Van Montagu M, Inz D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenvi CL, Dong KC, Friedman EM, Hanson JA, Cate JH (2005) Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations-implications for the study of ribosome dynamics. RNA 11:1898–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda Y, Ito H, Tanaka A (2016) Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28:2147–2160

  • Siddiqui MH, Alamri SA, Al-Khaishany MYY, Al-Qutami MA, Ali HM, Al-Whaibi MH, Al-Wahibi MS, Alharby HF (2016) Mitigation of adverse effects of heat stress on Vicia faba by exogenous application of magnesium. Saudi J Biol Sci 25:1393–2140

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW (2001) Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant Cell Physiol 42:546–554

    Article  CAS  PubMed  Google Scholar 

  • Silva DMd, Souza KRDd, Boas LVV, Alves YS, Alves JD (2017) The effect of magnesium nutrition on the antioxidant response of coffee seedlings under heat stress. Sci Hortic 224:115–125

    Article  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: An account of global flows. Global Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Sperrazza JM, Spremulli LL (1983) Quantitation of cation binding to wheat germ ribosomes: influences on submit association equilibria and ribosome activity. Nucleic Acids Res 11:2665–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stec B (2012) Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. Proc Natl Acad Sci 109:18785–18790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Lv A, Wen W, Zhou P, An Y (2020) Auxin Is Involved in Magnesium-Mediated Photoprotection in Photosystems of Alfalfa Seedlings Under Aluminum Stress. Front Plant Sci 11:746

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Yang R, Li L, Huang J (2017) The magnesium transporter MGT10 is essential for chloroplast development and photosynthesis in Arabidopsis thaliana. Mol Plant 10:1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Szulc P (2010) Effects of differentiated levels of nitrogen fertilization and the method of magnesium application on the utilization of nitrogen by two different maize cultivars for grain. Pol J Environ Stud 19:407–412

    CAS  Google Scholar 

  • Szulc P (2013) Effects of soil supplementation with urea and magnesium on nitrogen uptake, and utilization by two different forms of maize (Zea mays L.) differing in senescence rates. Pol J Environ Stud 22:239–248

    CAS  Google Scholar 

  • Szulc P, Bocianowski J, Kruczek A, Szymańska G, Roszkiewicz R (2013) Response of two cultivar types of maize (Zea mays L.) expressed in protein content and its yield to varied soil resources of N and Mg and a form of nitrogen fertilizer. Pol J Environ Stud 22:1845–1853

    CAS  Google Scholar 

  • Tan K, Keltjens WG, Findenegg GR (1992) Aluminium toxicity with sorghum genotypes in nutrient solutions and its amelioration by magnesium. Zeitschrift Für Pflanzenernährung Und Bodenkunde 155:81–86

    Article  CAS  Google Scholar 

  • Tang RJ, Luan S (2017) Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Curr Opin Plant Biol 39:97–105

    Article  CAS  PubMed  Google Scholar 

  • Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S (2015) Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci 112:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoi K, Kobayashi NI, Saito T, Iwata N, Kamada R, Iwata R, Suzuki H, Hirose A, Ohmae Y, Sugita R (2014) Effects of magnesium deficiency on magnesium uptake activity of rice root, evaluated using 28 Mg as a tracer. Plant Soil 384:69–77

    Article  CAS  Google Scholar 

  • Tränkner M, Jákli B, Tavakol E, Geilfus CM, Cakmak I, Dittert K, Senbayram M (2016) Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406:409–423

    Article  Google Scholar 

  • Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci 99:10876–10880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368:87–99

    Article  CAS  Google Scholar 

  • Visscher AM, Paul AL, Kirst M, Guy CL, Schuerger AC, Ferl RJ (2010) Growth performance and root transcriptome remodeling of Arabidopsis in response to mars-like levels of magnesium sulfate. PLoS ONE 5: e12348

  • Vothknecht UC, Soll J (2005) Chloroplast membrane transport: interplay of prokaryotic and eukaryotic traits. Gene 354:99–109

    Article  CAS  PubMed  Google Scholar 

  • Walker CJ, Weinstein JD (1994) The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 299:277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z (2020) Evaluation of Magnesium Fertilization Effects on Improving Yield and Quality of Horticultural Crops in China. China Agricultural University, China, Plant Nutr

    Google Scholar 

  • Wang Y, Hua X, Xu J, Chen Z, Fan T, Zeng Z, Wang H, Hour AL, Yu Q, Ming R (2019) Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genomics 20:1–18

    Google Scholar 

  • Wang Y, Wu B, Berns AE, Xing Y, Kuhn AJ, Amelung W (2020) Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: a greenhouse study with wheat. Plant Soil 455:93–105

    Article  CAS  Google Scholar 

  • Wani A, Shah M (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2:40–44

    Google Scholar 

  • Watanabe T, Okada K (2005) Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Ann Bot 95:379–385

    Article  CAS  PubMed  Google Scholar 

  • Wedding RT, Black MK (1988) Role of magnesium in the binding of substrate and effectors to phosphoenolpyruvate carboxylase from a CAM plant. Plant Physiol 87:443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workinger JL, Doyle R, Bortz J (2018) Challenges in the diagnosis of magnesium status. Nutrients 10:1202

    Article  PubMed Central  Google Scholar 

  • Xie K, Cakmak I, Wang S, Zhang F, Guo S (2020) Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J 9:249–256

    Article  Google Scholar 

  • Xu XF, Wang B, Lou Y, Han WJ, Lu JY, Li DD (2015) Magnesium Transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis. Plant J 84:925–936

    Article  CAS  PubMed  Google Scholar 

  • Yan YW, Mao DD, Yang L, Qi JL, Zhang XX, Tang QL, Li YP, Tang RJ, Luan S (2018) Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Front Plant Sci 9:274

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol 48:66–73

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tang RJ, Mu B, Ferjani A, Shi J, Zhang H, Zhao F, Lan WZ, Luan S (2018) Vacuolar proton pyrophosphatase is required for high magnesium tolerance in Arabidopsis. Int J Mol Sci 19:3617

    Article  PubMed Central  Google Scholar 

  • Yang N, Jiang JL, Xie H, Bai MY, Xu QZ, Wang XG, Yu XM, Chen ZC, Guan YF (2017) Metabolomics Reveals Distinct Carbon and Nitrogen Metabolic Responses to Magnesium Deficiency in Leaves and Roots of Soybean [Glycine max (Linn.) Merr.]. Front Plant Sci 8: 2091

  • Ye X, Chen XF, Deng CL, Yang LT, Lai NW, Guo JX, Chen LS (2019) Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in Citrus sinensis seedlings. Plants 8:389

    Article  CAS  PubMed Central  Google Scholar 

  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ 55:213–221

    Article  CAS  Google Scholar 

  • Zhang H, Wang B, Xu M (2008) Effects of inorganic fertilizer inputs on grain yields and soil properties in a long-term wheat-corn cropping system in South China. Commun Soil Sci Plant Anal 39:1583–1599

    Article  CAS  Google Scholar 

  • Zhang C, Li H, Wang J, Zhang B, Wang W, Lin H, Luan S, Gao J, Lan W (2017) The rice high-affinity K+ transporter OsHKT2;4 mediates Mg2+ homeostasis under high-Mg2+ conditions in transgenic Arabidopsis. Front Plant Sci 8:1823

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LD, Peng YY, Jian L, Tian XY, Chen ZC (2019) OsMGT1 confers resistance to magnesium deficiency by enhancing the import of Mg in rice. Int J Mol Sci 20:207

    Article  PubMed Central  Google Scholar 

  • Zhu Q, de Vries W, Liu X, Hao T, Zeng M, Shen J, Zhang F (2018) Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010. Sci Total Environ 618:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Zirek NS, Ozlem U (2020) The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48:967–977

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Chun-Jian Li for careful review of the manuscript. We thank three anonymous reviewers for their valuable suggestions. The study is supported by National Natural Science Foundation of China (No. 32022077, 31872171 and 31501832). The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mo Wang, Liang-Quan Wu or Zhi-Chang Chen.

Additional information

Responsible Editor: Ismail Cakmak.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, XY., He, DD., Bai, S. et al. Physiological and molecular advances in magnesium nutrition of plants. Plant Soil 468, 1–17 (2021). https://doi.org/10.1007/s11104-021-05139-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05139-w

Keywords

Navigation