Skip to main content

Advertisement

Log in

Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Studies verify that intercropping increases soil macro-aggregates but the mechanism underlying the increase is poorly understood.

Methods

Three long-term field experiments were conducted starting in 2009 at three sites in an oasis in northwest China. The first was a split-plot design: Rhizobium (with or without inoculation) and three cropping systems (faba bean/maize intercropping and corresponding monocultures). The second and third experiments were both single-factorial randomized block designs with nine cropping systems (maize intercropped with faba bean, chickpea, soybean, or oilseed rape, and the corresponding monocultures). Soil aggregates were determined by the wet sieving method. Microbial biomass and community composition in 2015 and 2016 were determined by phospholipid fatty acid (PLFA) and high throughput sequencing analysis of 16S rRNA.

Results

Soil macro-aggregates (> 2 mm) in intercropping systems increased by 15.5–58.6% across three sites and two years, an effect derived partly from increased relative abundance of soil Sordariales, from enhanced arbuscular mycorrhizal fungi biomass, or from reduced relative abundance of Nitrospirae, depending on soil type.

Conclusions

Intercropping alters soil microbial community composition and further facilitates soil aggregation. These findings provide insights into the mechanisms underlying the maintenance of biodiversity in ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

C:

Carbon

FAMEs:

Fatty acid methyl esters

FB:

Fungal biomass

K:

Potassium

N:

Nitrogen

non-AMF:

non-arbuscular mycorrhizal fungi

P:

Phosphorus

PLFA:

Phospholipid fatty acid

PLS-DA:

Partial least squares discriminant analysis

SEM:

Structural equation model

References

  • Alvey S, Yang CH, Buerkert A, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils. Biol Fertil Soils 37:73–82

    Google Scholar 

  • Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151

    Article  Google Scholar 

  • Bach EM, Hofmockel KS (2014) Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biol Biochem 69:54–62

    Article  CAS  Google Scholar 

  • Barthes B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion validation at several levels. Catena 47:133–149

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) Extraction of lipids in solution by the method of Bligh and Dyer. J Physiol Biochem 37:911–917

    CAS  Google Scholar 

  • Bloom SA (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol-Prog. Ser 5:125–128

    Google Scholar 

  • Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  CAS  PubMed  Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  CAS  Google Scholar 

  • Caesar-TonThat TC, Cochran VL (2000) Soil aggregate stabilization by a saprophytic lignin-decomposing basidiomycete fungus I. microbiological aspects. Biol Fertil Soils 32:374–380

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD (2010) QIIME allows integration and analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu GX, Shen QR, Cao JL (2004) Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant Soil 263:17–27

    Article  CAS  Google Scholar 

  • Corbin AT, Thelen KD, Robertson GP, Richard HL (2010) Influence of cropping systems on soil aggregate and weed seedbank dynamics during the organic transition period. Agron J 102:1632–1640

    Article  Google Scholar 

  • Dahmardeh M, Ghanbari A, Syahsar B, Ramrodi M (2010) The role of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afric. J Agric Res 5:631–636

    Google Scholar 

  • Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechnisms and the factors affecting these: a review. Aust J Soil Res 35:431–459

    Article  Google Scholar 

  • Denef K, Six J, Bossuyt H, Frey SD, Elliot ET, Merckx R, Paustian K (2001) Influence of dry-wey cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33:1599–1611

    Article  CAS  Google Scholar 

  • Denef K, Six J, Merckx R, Paustian K (2002) Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil 246:185–200

    Article  CAS  Google Scholar 

  • Diaz-Zorita M, Perfect E, Grove J (2002) Disruptive methods for assessing soil structure. Soil Tillage Res 64:3–22

    Article  Google Scholar 

  • Dissanayaka DMSB, Maruyama H, Masuda G, Wasaki J (2015) Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant Soil 390:223–236

    Article  CAS  Google Scholar 

  • Duchicela J, Sulivan TS, Bontti E, Bever JD (2013) Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J Appl Ecol 50:1266–1273

    CAS  Google Scholar 

  • Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais ACW, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    Article  CAS  PubMed  Google Scholar 

  • Fan WG, Tang YR, Qu Y, Cao FB, Huo GC (2014) Infant formula supplemented with low protein and high carbohydrate alters the intestinal microbiota in neonatal SD rats. BMC Microbiol 14:279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis CA (1986) Multiple cropping systems. 383 pp. Macmillan, London

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163

    Article  Google Scholar 

  • Garland G, Bünemann EK, Oberson A, Frossard E, Six J (2017, 2016) Plant mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant Soil:1–19

  • Ghosh PK, Mohanty M, Bandyopadhyay KK, Painuli DK, Misra AK (2006) Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semiarid tropics of India. Field Crop Res 96:90–97

    Article  Google Scholar 

  • Guillou CL, Angers DA, Leterme P, Menasseri-Aubry S (2011) Differential and successive effects of residue quality and soil mineral N on water-stable aggregation during crop residue decomposition. Soil Biol Biochem 43:1955–1960

    Article  CAS  Google Scholar 

  • Gupta VVSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20:777–786

    Article  CAS  Google Scholar 

  • Gupta VVSR, Germida JJ (2015) Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol Biochem 80:A3–A9

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop Res 113:64–71

    Article  Google Scholar 

  • Haynes W (2013) Wilcoxon Rank Sum Test. In: Wilcoxon rank sum test. Encyclopedia of systems biology. Springer, New York, pp 2354–2355

    Chapter  Google Scholar 

  • Jagadamma S, Steinweg JM, Mayes MA, Wang GS, Post WM (2014) Decomposition of added and native organic carbon from physically separated fractions of diverse soils. Biol Fertil Soils 50:613–621

    Article  CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Kihara J, Martius C, Bationo A, Thuita M, Lesueur D, Herrmann L, Amelung W, Vlek PLG (2012) Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl Soil Ecol 58:12–20

    Article  Google Scholar 

  • Kline RB (2011) Principles and practice of structural equation modeling (Third ed.). Guilford, North Carolina

  • Kremer RJ, Kussman R (2009) Soil quality in a pecan agroforestry system is improved with intercropped kura clover. Agrofor Syst 7:377–383

    Google Scholar 

  • Lehmann A, Rillig MC (2015) Understanding mechanisms of soil biota involvement in soil aggregation: a way forward with saprobic fungi? Soil Biol Biochem 88:298–302

    Article  CAS  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation - a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Li L, Tang CX, Rengel Z, Zhang FS (2003) Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant Soil 248:297–303

    Article  CAS  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104:11192–11196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Mu YH, Cheng YB, Liu XG, Nian H (2013a) Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol Plant 35:1113–1119

    Article  CAS  Google Scholar 

  • Li L, Zhang LZ, Zhang FS (2013b) Crop mixtures and the mechanisms of overyielding. In:, Levin SA, editors., encyclopedia of biodiversity, second edition, Waltham, MA: academic press. Volume 2, pp 382–395

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  CAS  PubMed  Google Scholar 

  • Mardhiah U, Caruso T, Gurnell A, Rillig MC (2014) Just a matter of time: Fungi and roots significantly and rapidly aggregate soil over four decades along the Tagliamento River. NE Italy Soil Biol Biochem 75:133–142

    Article  CAS  Google Scholar 

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular mycorrhizas: physiology and function. Springer, Netherlands, pp 3–18

    Chapter  Google Scholar 

  • Moeskops B, Sukristiyonubowo, Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D, De Neve S (2010) Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl Soil Ecol 45:112–120

  • Moeskops B, Buchan D, Sukristiyonubowo De Neve S, Gusseme BD, Widowati LR, Setyorini D, Sleutel S (2012) Soil quality indicators for intensive vegetable production systems in Java. Indonesia Ecol Indic 18:218–226

    Article  CAS  Google Scholar 

  • Mucheru-Muna M, Pypers P, Mugendi D, Kung’u J, Mugwe J, Merckx R, Vanlauwe B (2010) A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop Res 115:132–139

    Article  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-131. URL: https://www.CRAN.R-project.org/package=nlme

  • Piotrowski JS, Denich T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373

    Article  PubMed  Google Scholar 

  • Plaza-Bonilla D, Alvaro-Fuentes J, Cantero-Martinez C (2012) Soil aggregate stability as affected by fertilization type under semiarid no-tillage conditions. Soil and water management and conservation. Soil Sci Soc Am J 77:284–292

    Article  CAS  Google Scholar 

  • Plaza-Bonilla D, Cantero-Martínez C, Viñas P, Álvaro-Fuentes J (2013) Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193-194:76–82

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2014) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Rosseel Y (2012) lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48, 1–36. R package version 0.5–23.1097. URL: https://CRAN.R-project.org/package=lavaan

  • Rousk J, Bååth E, Brookes PC, Lauder CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rusinamhodzi L, Corbeels M, Nyamangara J, Giller KE (2012) Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in Central Mozambique. Field Crop Res 136:12–22

    Article  Google Scholar 

  • Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models. Methods of Psychological Research 8(2):23–74

    Google Scholar 

  • Senaratne R, Liyanage NDL, Soper RJ (1995) Nitrogen-fixation of and N-transfer from cowpea, mungbean and groundnut when intercropped with maize. Fertil Res 40:41–48

    Article  Google Scholar 

  • Sheng PP, Liu RJ, Li M (2012) Inoculation with an arbuscular mycorrhizal fungus and intercropping with pepper can improve soil quality and watermelon crop performance in a system previously managed by monoculture. American-Eurasian J Agric Environ Sci 12:1462–1468

    Google Scholar 

  • Siddiky MRK, Schaller J, Caruso T, Rillig MC (2012a) Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol Biochem 47:93–99

    Article  CAS  Google Scholar 

  • Siddiky MRK, Kohler J, Cosme M, Rillig MC (2012b) Soil biota effects on soil structure: interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biol Biochem 50:33–39

    Article  CAS  Google Scholar 

  • Singh JS, Gupta VK (2018) Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ 634:497–500

    Article  CAS  PubMed  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci Soc Am J 64:1042–1049

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Sa DMJC, Albrecht A (2002) Soil organic matter, biota and aggregatetion in temperate and tropical soils-effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Snapp SS, Blackie MJ, Gilbert RA, Bezner-Kerr R, Kanyama-Phiri GY (2010) Biodiversity can support a greener revolution in Africa. Proc Natl Acad Sci U S A 107:20840–20845

    Article  PubMed  PubMed Central  Google Scholar 

  • Song YN, Marschner P, Li L, Bao XG, Sun JH, Zhang FS (2007a) Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fertil Soils 44:307–314

    Article  Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2007b) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fertil Soils 43:565–574

    Article  CAS  Google Scholar 

  • Spohn M, Giani L (2011) Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol Biochem 43:1081–1088

    Article  CAS  Google Scholar 

  • Suzuki C, Takenaka M, Oka N, Nagaoka K, Karasawa T (2012) A DGGE analysis shows that crop rotation systems influence the bacterial and fungal communities in soils. Soil Sci Plant Nutr 58:288–296

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Science 346:1078

    Article  CAS  Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771

    Article  CAS  PubMed  Google Scholar 

  • Tisdall JM (1994) Possible role of soil microorganisms in aggregation in soils. Plant Soil 159:115–121

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Stabilization of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441

    Article  Google Scholar 

  • Tisdall JM, Smith SE, Rengasamy P (1997) Aggregation of soil fungal hyphae. Aust J Soil Res 35:55–60

    Article  Google Scholar 

  • Tisdall JM, Nelson SE, Wilkinson KG, Smith SE, McKenzie BM (2012) Stabilisation of soil against wind erosion by six saprotrophic fungi. Soil Biol Biochem 50:134–141

    Article  CAS  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Wang X, Yost RS, Linquist BA (2001) Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Sci Soc Am J 65:139–146

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu J, Shen JH, Luo YM, Scheu S, Ke X (2010) Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil Tillage Res 107:71–79

    Article  Google Scholar 

  • Wang ZG, Jin X, Bao XG, Li XF, Zhao JH, Sun JH, Christie P, Li L (2014) Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS One 9(12):e113984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZG, Bao XG, Li XF, Jin X, Zhao JH, Sun JH, Christie P, Li L (2015) Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil 391(1–2):265–282

    Article  CAS  Google Scholar 

  • Willey RW (1979) Intercropping: its importance and research needs. Part 1. Competition and yield advantages. Field Crops Abstr 32:1–10

    Google Scholar 

  • Xiao YB, Li L, Zhang FS (2004) Effect of root contact on interspecific competition and N tranfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 262:45–54

    Article  CAS  Google Scholar 

  • Yin C, Jones KL, Peterson DE, Garrett KA, Hulbert SH, Paulitz TC (2010) Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol Biochem 42:2111–2118

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zhu YY, Chen HR, Fan JH, Wang YL, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  CAS  PubMed  Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper - World Agroforestry Centre

Download references

Acknowledgements

We appreciate Prof. Huiru Peng from China Agricultural University for her great help in statistical analysis of results. We also thank Fei Wang and Ning Shi for help with the high throughput sequencing work and Fangfang Zhang for suggestions leading to the improvement of an earlier version of the manuscript. This work was funded by the National Natural Science Foundation of China (NSFC) (Project no. 31430014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li.

Additional information

Responsible Editor: Long Li.

Electronic supplementary material

ESM 1

(DOC 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Xl., Wang, Cb., Bao, Xg. et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil 436, 173–192 (2019). https://doi.org/10.1007/s11104-018-03924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-03924-8

Keywords

Navigation