Skip to main content
Log in

Hormone mediated regulation of the shoot apical meristem

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Recent work on hormone mediated regulation of the SAM is reviewed, emphasizing how combinations of genetic, molecular and modelling approaches have refined models based on classic experimental and physiological work. Special emphasis is given to newly described mechanisms that modulate the responsiveness of specific tissues to hormones and their potential to direct position dependent determination processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544. doi:10.1093/jxb/eri148

    PubMed  CAS  Google Scholar 

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C et al (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856. doi:10.1016/j.devcel.2007.10.001

    PubMed  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    PubMed  CAS  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631. doi:10.1104/pp.103.036897

    PubMed  CAS  Google Scholar 

  • Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314:1410–1411. doi:10.1126/science.1134040

    PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602. doi:10.1016/S0092-8674(03)00924-3

    PubMed  CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563. doi:10.1016/j.cub.2006.01.058

    PubMed  CAS  Google Scholar 

  • Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW et al (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2:615–619. doi:10.1038/nmeth0805-615

    PubMed  CAS  Google Scholar 

  • Bishopp A, Mahonen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869. doi:10.1242/dev.02359

    PubMed  CAS  Google Scholar 

  • Bowman JL, Floyd SK (2008) Patterning and polarity in seed plant shoots. Annu Rev Plant Biol 59:67–88. doi:10.1146/annurev.arplant.57.032905.105356

    PubMed  CAS  Google Scholar 

  • Bowman JL, Floyd SK, Sakakibara K (2007) Green genes—comparative genomics of the green branch of life. Cell 129:229–234. doi:10.1016/j.cell.2007.04.004

    PubMed  CAS  Google Scholar 

  • Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. doi:10.1126/science.1146265

    PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619. doi:10.1126/science.289.5479.617

    PubMed  CAS  Google Scholar 

  • Carraro N, Peaucelle A, Laufs P, Traas J (2006) Cell differentiation and organ initiation at the shoot apical meristem. Plant Mol Biol 60:811–826. doi:10.1007/s11103-005-2761-6

    PubMed  CAS  Google Scholar 

  • Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNRÖSCHEN and DORNRÖSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134:1653–1662. doi:10.1242/dev.001016

    PubMed  CAS  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064. doi:10.1242/dev.00992

    PubMed  CAS  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241. doi:10.1126/science.1076920

    PubMed  CAS  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521. doi:10.1038/ng.2007.20

    PubMed  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585. doi:10.1016/S0092-8674(00)80239-1

    PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. doi:10.1126/science.1141752

    PubMed  CAS  Google Scholar 

  • de Reuille PB, Bohn- I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103:1627–1632. doi:10.1073/pnas.0510130103

    PubMed  Google Scholar 

  • Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N et al (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci USA 104:14537–14542. doi:10.1073/pnas.0704166104

    PubMed  CAS  Google Scholar 

  • Fiers M, Ku KL, Liu C-M (2007) CLE peptide ligands and their roles in establishing meristems. Curr Opin Plant Biol 10:39–43. doi:10.1016/j.pbi.2006.11.003

    PubMed  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R (1911–1914) Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743. doi:10.1038/nature01387

    PubMed  CAS  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R et al (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057. doi:10.1038/nature06206

    PubMed  CAS  Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    PubMed  CAS  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034. doi:10.1038/nature02778

    PubMed  CAS  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548. doi:10.1242/dev.010298

    PubMed  CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276. doi:10.1038/35104500

    PubMed  CAS  Google Scholar 

  • Grieneisen VA, Xu J, Maree AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013. doi:10.1038/nature06215

    PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460. doi:10.1016/j.pbi.2007.08.014

    PubMed  CAS  Google Scholar 

  • Hardtke CS (2007) Transcriptional auxin-brassinosteroid crosstalk: Who’s talking? Bioessays 29:1115–1123. doi:10.1002/bies.20653

    PubMed  CAS  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565. doi:10.1016/S0960-9822(02)01125-9

    PubMed  CAS  Google Scholar 

  • Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: bridging the gap? Bioessays 26:395–404. doi:10.1002/bies.20016

    PubMed  CAS  Google Scholar 

  • Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961. doi:10.1242/dev.02545

    PubMed  CAS  Google Scholar 

  • Hedden P, Thomas SG (eds) (2006) Plant hormone signaling. In: Annual plant reviews. Blackwell, Oxford, UK, p 348

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Google Scholar 

  • Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826. doi:10.1073/pnas.0402887101

    PubMed  CAS  Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336. doi:10.1105/tpc.107.057752

    PubMed  CAS  Google Scholar 

  • Hunter DA, Yoo SD, Butcher SM, McManus MT (1999) Expression of 1 aminocyclopropane-1-carboxylate oxidase during leafontogeny in white clover. Plant Physiol 120:131–141. doi:10.1104/pp.120.1.131

    PubMed  CAS  Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and Class III HD-Zip Gene Families Regulate Embryo Patterning and Modulate Auxin Flow during Embryogenesis in Arabidopsis. Plant Cell 19:495–508. doi:10.1105/tpc.106.047472

    PubMed  CAS  Google Scholar 

  • Jackson D, Hake S (1999) Control of phyllotaxy in maize by the abphyl1 gene. Development 126:315–323

    PubMed  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I et al (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565. doi:10.1016/j.cub.2005.07.023

    PubMed  CAS  Google Scholar 

  • Jonsson H, Heisler M, Reddy GV, Agrawal V, Gor V, Shapiro BE et al (2005) Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21:i232–i240. doi:10.1093/bioinformatics/bti1036

    PubMed  Google Scholar 

  • Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638. doi:10.1073/pnas.0509839103

    PubMed  Google Scholar 

  • Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–4362. doi:10.1242/dev.00618

    PubMed  CAS  Google Scholar 

  • King KE, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776

    PubMed  CAS  Google Scholar 

  • Kirch T, Simon R, Grunewald M, Werr W (2003) The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. Plant Cell 15:694–705. doi:10.1105/tpc.009480

    PubMed  CAS  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655. doi:10.1038/nature05504

    PubMed  CAS  Google Scholar 

  • Kusaba S, Kano-Murakami Y, Matsuoka M, Tamaoki M, Sakamoto T, Yamaguchi I et al (1998) Alteration of hormone levels in transgenic tobacco plants overexpressing the rice homeobox gene OSH1. Plant Physiol 116:471–476. doi:10.1104/pp.116.2.471

    PubMed  CAS  Google Scholar 

  • Kutschera U (2008) The pacemaker of plant growth. Trends Plant Sci 13:105–107. doi:10.1016/j.tplants.2007.12.002

    PubMed  CAS  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. doi:10.1038/nature04270

    PubMed  CAS  Google Scholar 

  • Lejeune P, Bernier G, Requier M-C, Kinet J-M (1994) Cytokinins in phloem and xylem saps of Sinapis alba during floral induction. Physiol Plant 90:522–528. doi:10.1111/j.1399-3054.1994.tb08810.x

    CAS  Google Scholar 

  • Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130:3163–3173. doi:10.1242/dev.00525

    PubMed  CAS  Google Scholar 

  • Lenhard M, Jurgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129:3195–3206

    PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69. doi:10.1038/379066a0

    PubMed  CAS  Google Scholar 

  • Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK (2002) Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129:2797–2806

    PubMed  CAS  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523. doi:10.1126/science.1123841

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Lee J-Y (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726. doi:10.1038/nrm1470

    PubMed  CAS  Google Scholar 

  • Lyndon RF (1998) The shoot apical meristem. Cambridge University Press, Cambridge

    Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674. doi:10.1146/annurev.arplant.56.032604.144204

    PubMed  CAS  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473. doi:10.1016/j.devcel.2008.03.013

    PubMed  CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947. doi:10.1073/pnas.97.2.942

    PubMed  CAS  Google Scholar 

  • Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh J, Nagato Y et al (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA 101:875–880. doi:10.1073/pnas.2636936100

    PubMed  CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461. doi:10.1038/nature05130

    PubMed  CAS  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097. doi:10.1038/nature06943

    PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T et al (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853. doi:10.1104/pp.103.030031

    PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    CAS  Google Scholar 

  • Ori N, Juarez MT, Jackson D, Yamaguchi J, Banowetz GM, Hake S (1999) Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell 11:1073–1080

    PubMed  CAS  Google Scholar 

  • Ortega-Martinez O, Pernas M, Carol RJ, Dolan L (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317:507–510. doi:10.1126/science.1143409

    PubMed  CAS  Google Scholar 

  • Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237. doi:10.1242/dev.01261

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003a) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083. doi:10.1242/dev.00596

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M et al (2003b) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260. doi:10.1038/nature02081

    PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544. doi:10.1126/science.283.5407.1541

    PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JM, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521. doi:10.1128/MCB.20.13.4513-4521.2000

    PubMed  CAS  Google Scholar 

  • Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–977. doi:10.1105/tpc.002196

    PubMed  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449. doi:10.1146/annurev.arplant.57.032905.105231

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001a) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590. doi:10.1101/gad.867901

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H et al (2001b) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516. doi:10.1104/pp.125.3.1508

    PubMed  CAS  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. doi:10.1038/nature05703

    PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202. doi:10.1038/nature05618

    PubMed  CAS  Google Scholar 

  • Scanlon MJ, Henderson DC, Bernstein B (2002) SEMAPHORE1 functions during the regulation of ancestrally duplicated knox genes and polar auxin transport in maize. Development 129:2663–2673

    PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644. doi:10.1016/S0092-8674(00)80700-X

    PubMed  CAS  Google Scholar 

  • Sessions A, Yanofsky MF, Weigel D (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–782. doi:10.1126/science.289.5480.779

    PubMed  CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489. doi:10.1016/j.pbi.2006.07.008

    PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306. doi:10.1073/pnas.0510457103

    PubMed  CAS  Google Scholar 

  • Snow M, Snow R (1937) Auxin and leaf formation. New Phytol 36:1–18. doi:10.1111/j.1469-8137.1937.tb06899.x

    CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191. doi:10.1016/j.cell.2008.01.047

    PubMed  CAS  Google Scholar 

  • Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94. doi:10.1111/j.1365-313X.2007.03032.x

    PubMed  CAS  Google Scholar 

  • Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206. doi:10.1104/pp.104.043034

    PubMed  CAS  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386. doi:10.1126/science.1151461

    PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036. doi:10.1126/science.1141753

    PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M et al (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645. doi:10.1038/nature05731

    PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176. doi:10.1016/j.cell.2008.01.049

    PubMed  CAS  Google Scholar 

  • Thimann KV (1974) Fifty years of plant hormone research. Plant Physiol 54:450–453

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543. doi:10.1105/tpc.017384

    PubMed  CAS  Google Scholar 

  • To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92. doi:10.1016/j.tplants.2007.11.005

    PubMed  CAS  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46. doi:10.1016/S0074-7696(04)34001-5

    PubMed  CAS  Google Scholar 

  • Tucker MR, Laux T (2007) Connecting the paths in plant stem cell regulation. Trends Cell Biol 17:403–410. doi:10.1016/j.tcb.2007.06.002

    PubMed  CAS  Google Scholar 

  • Weijers D, Jurgens G (2005) Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8:32–37. doi:10.1016/j.pbi.2004.11.001

    PubMed  CAS  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246. doi:10.1104/pp.107.100370

    PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550. doi:10.1105/tpc.014928

    PubMed  CAS  Google Scholar 

  • Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484. doi:10.1034/j.1399-3054.1999.105312.x

    CAS  Google Scholar 

  • Wu X, Dabi T, Weigel D (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15:436–440. doi:10.1016/j.cub.2004.12.079

    PubMed  CAS  Google Scholar 

  • Wu X, Chory J, Weigel D (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev Biol 309:306–316. doi:10.1016/j.ydbio.2007.07.019

    PubMed  CAS  Google Scholar 

  • Wurschum T, Gross-Hardt R, Laux T (2006) APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18:295–307. doi:10.1105/tpc.105.038398

    PubMed  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G et al (2005) Arabidopsis KNOX proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571. doi:10.1016/j.cub.2005.07.060

    PubMed  CAS  Google Scholar 

  • Yu Y-B, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethyoxyvinylglycine and cobalt ion. Plant Physiol 64:1074–1077

    PubMed  CAS  Google Scholar 

  • Zondlo SC, Irish VF (1999) CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. Plant J 19:259–268. doi:10.1046/j.1365-313X.1999.00523.x

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Toshi Foster for stimulating discussions and two anonymous reviewers for thoughtful comments and suggestions. This work was supported by the New Zealand Foundation for Research, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Veit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veit, B. Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol 69, 397–408 (2009). https://doi.org/10.1007/s11103-008-9396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9396-3

Keywords

Navigation