Skip to main content
Log in

Characterization of mRNA Lipid Nanoparticles by Electron Density Mapping Reconstruction: X-ray Scattering with Density from Solution Scattering (DENSS) Algorithm

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to test the feasibility of using Small Angle X-ray Scattering (SAXS) coupled with Density from Solution Scattering (DENSS) algorithm to characterize the internal architecture of messenger RNA-containing lipid nanoparticles (mRNA-LNPs).

Methods

The DENSS algorithm was employed to construct a three-dimensional model of average individual mRNA-LNP. The reconstructed models were cross validated with cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) to assess size, morphology, and internal structure.

Results

Cryo-TEM and DLS complemented SAXS, revealed a core–shell mRNA-LNP structure with electron-rich mRNA-rich region at the core, surrounded by lipids. The reconstructed model, utilizing the DENSS algorithm, effectively distinguishes mRNA and lipids via electron density mapping. Notably, DENSS accurately models the morphology of the mRNA-LNPs as an ellipsoidal shape with a "bleb" architecture or a two-compartment structure with contrasting electron densities, corresponding to mRNA-filled and empty lipid compartments, respectively. Finally, subtle changes in the LNP structure after three freeze–thaw cycles were detected by SAXS, demonstrating an increase in radius of gyration (Rg) associated with mRNA leakage.

Conclusion

Analyzing SAXS profiles based on DENSS algorithm to yield a reconstructed electron density based three-dimensional model can be a useful physicochemical characterization method in the toolbox to study mRNA-LNPs and facilitate their development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Raw SAXS data were included in the supporting information and also available upon request.

References

  1. Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Sig Transduct Target Ther. 2022;7(1):166.

    Article  CAS  Google Scholar 

  2. Oude Blenke E, Örnskov E, Schöneich C, Nilsson GA, Volkin DB, Mastrobattista E, et al. The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case. J Pharm Sci. 2023;112(2):386–403.

    Article  CAS  PubMed  Google Scholar 

  3. Ai L, Li Y, Zhou L, Yao W, Zhang H, Hu Z, et al. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. Cell Discov. 2023;9(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao P, Hou X, Yan J, Du S, Xue Y, Li W, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioactive Materials. 2020;5(2):358–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev. 2021;174:1–29.

    Article  CAS  PubMed  Google Scholar 

  6. Eygeris Y, Patel S, Jozic A, Sahay G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 2020;20(6):4543–9.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. San Emeterio J, Pollack L. Visualizing a viral genome with contrast variation small angle X-ray scattering. J Biol Chem. 2020;295(47):15923–32.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grant TD. Ab initio electron density determination directly from solution scattering data. Nat Methods. 2018;15(3):191–3.

    Article  CAS  PubMed  Google Scholar 

  9. Grant TD. Reply to: Limitations of the iterative electron density reconstruction algorithm from solution scattering data. Nat Methods. 2021;18(3):246–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, et al. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol. 2022;20(1):176.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Doll SG, Meshkin H, Bryer AJ, Li F, Ko YH, Lokareddy RK, et al. Recognition of the TDP-43 nuclear localization signal by importin α1/β. Cell Rep. 2022;39(13):111007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lokareddy RK, Hou CFD, Doll SG, Li F, Gillilan RE, Forti F, et al. Terminase subunits from the pseudomonas-phage E217. J Mol Biol. 2022;434(20):167799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim M, Kim HS, D’Souza A, Gallagher K, Jeong E, Topolska-Woś A, et al. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc Natl Acad Sci USA. 2022;119(34):e2207408119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jain M, Golzarroshan B, Lin C, Agrawal S, Tang W, Wu C, et al. Dimeric assembly of human Suv3 helicase promotes its RNA unwinding function in mitochondrial RNA degradosome for RNA decay. Protein Science.2022;31:e4312. https://doi.org/10.1002/pro.4312.

  15. Liu Y, Munsayac A, Hall I, Keane SC. Solution Structure of NPSL2, A Regulatory Element in the oncomiR-1 RNA. J Mol Biol. 2022;434(18):167688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr. 2009;42(2):342–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Guo R, Sumner J, Qian S. Structure of diisobutylene maleic acid copolymer (DIBMA) and its lipid particle as a “Stealth” membrane-mimetic for membrane protein research. ACS Appl Bio Mater. 2021;4(6):4760–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fujii S, Sakurai K. Structural analysis of an octameric resorcinarene self-assembly in toluene and its morphological transition by temperature. J Phys Chem Lett. 2021;12(28):6464–8.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi R, Yamamoto K, Sugahara R, Otake R, Hayashi K, Nakamura J, et al. In situ and ex situ studies of ring-like assembly of silica nanoparticles in the presence of poly(propylene oxide)–poly(ethylene oxide) block copolymers. Langmuir 2023:39, 32, 11379–387.

  20. Sumner J, Qian S. DENSS-multiple: A structure reconstruction method using contrast variation of small-angle neutron scattering based on the DENSS algorithm. BBA Advances. 2022;2:100063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76(6):2879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel S, Ashwanikumar N, Robinson E, Xia Y, Mihai C, Griffith JP, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun. 2020;11(1):983.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021;601:120586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. AboulFotouh K, Southard B, Dao HM, Xu H, Moon C, Williams Iii RO, et al. Effect of lipid composition on RNA-Lipid Nanoparticle properties and their sensitivity to thin-film freezing and drying. Int J Pharm. 2023;650:123688.

    Article  PubMed  Google Scholar 

  25. Hopkins JB, Gillilan RE, Skou S. ıt BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr. 2017;50(5):1545–53.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr. 1992;25(4):495–503.

    Article  CAS  ADS  Google Scholar 

  27. Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data Using IMOD. J Struct Biol. 1996;116(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  28. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rappolt M, Hickel A, Bringezu F, Lohner K. Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction. Biophys J. 2003;84(5):3111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grant TD, Luft JR, Wolfley JR, Tsuruta H, Martel A, Montelione GT, et al. Small angle X-ray scattering as a complementary tool for high-throughput structural studies. Biopolymers. 2011;95(8):517–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeffries CM, Ilavsky J, Martel A, Hinrichs S, Meyer A, Pedersen JS, et al. Small-angle X-ray and neutron scattering. Nat Rev Methods Primers. 2021;1(1):70.

    Article  CAS  Google Scholar 

  32. Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Letters. 2015;589(19PartA):2570–7.

    Article  CAS  PubMed  Google Scholar 

  33. Di Cola E, Grillo I, Ristori S. Small angle x-ray and neutron scattering: powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics. 2016;8(2):10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Noodleman L. Mapping elusive electron density. Nat Chem Biol. 2016;12(6):391–2.

    Article  CAS  PubMed  Google Scholar 

  35. Callaway E. The protein-imaging technique taking over structural biology. Nature (London). 2020;578(7794):201-201.

  36. Smyth MS. x Ray crystallography. Mol Pathol. 2000;53(1):8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, et al. NMR-based methods for protein analysis. Anal Chem. 2021;93(4):1866–79.

    Article  CAS  PubMed  Google Scholar 

  38. Li S, Hu Y, Li A, Lin J, Hsieh K, Schneiderman Z, et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat Commun. 2022;13(1):5561.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Cheng MHY, Leung J, Zhang Y, Strong C, Basha G, Momeni A, et al. Induction of Bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv Mater. 2023;35(31):2303370.

    Article  CAS  Google Scholar 

  40. Urimi D, Hellsing M, Mahmoudi N, Söderberg C, Widenbring R, Gedda L, et al. Structural characterization study of a lipid nanocapsule formulation intended for drug delivery applications using small-angle scattering techniques. Mol Pharmaceutics. 2022;19(4):1068–77.

    Article  CAS  Google Scholar 

  41. Konarev PV, Svergun DI. Limitations of the iterative electron density reconstruction algorithm from solution scattering data. Nat Methods. 2021;18(3):244–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahieu E, Gabel F. Biological small-angle neutron scattering: recent results and development. Acta Crystallogr D Struct Biol. 2018;74(8):715–26.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Shen C, Woelk C, Kikhney AG, Torres J, Surya W, Harvey RD, et al. Absolute scattering length density profile of liposome bilayers obtained by SAXS combined with GIXOS - a tool to determine model biomembrane structure. https://doi.org/10.1101/2022.12.13.520277.

  44. Hammel M, Fan Y, Sarode A, Byrnes AE, Zang N, Kou P, et al. Correlating the Structure and gene silencing activity of oligonucleotide-loaded lipid nanoparticles using small-angle x-ray scattering. ACS Nano. 2023;17(12):11454–465.

Download references

Acknowledgements

We acknowledge the asistance of Thomas Weiss in performing synchrotron SAXS experiment. Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (P30GM133894). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or DoE.

Funding

This work was supported by a Sponsored Research Agreement from TFF Pharmaceuticals Inc. (to ROW and ZC).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. / All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhengrong Cui or Robert O. Williams III.

Ethics declarations

Competing Interest

ZC and ROW report financial support by TFF Pharmaceuticals, Inc. The terms have been reviewed and approved by UT Austin in accordance with its institutional policy on objectivity in research. ZC reports a relationship with TFF Pharmaceuticals, Inc. that includes equity or stocks and funding grants. ROW reports a relationship with TFF Pharmaceuticals, Inc. that includes consulting or advisory, equity or stocks, and funding grants. ZC, ROW, and KJP have patent(s) and/or patent applications related to thin-film freezing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1699 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, H.M., AboulFotouh, K., Hussain, A.F. et al. Characterization of mRNA Lipid Nanoparticles by Electron Density Mapping Reconstruction: X-ray Scattering with Density from Solution Scattering (DENSS) Algorithm. Pharm Res 41, 501–512 (2024). https://doi.org/10.1007/s11095-024-03671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03671-9

Keywords

Navigation