Skip to main content
Log in

The Implications of Drug-Polymer Interactions on the Physical Stability of Amorphous Solid Dispersions

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Amorphous solid dispersions (ASDs) are a formulation and development strategy that can be used to increase the apparent aqueous solubility of poorly water-soluble drugs. Their implementation, however, can be hindered by destabilization of the amorphous form, as the drug recrystallizes from its metastable state. Factors such as the drug-polymer solubility, miscibility, mobility, and nucleation/crystal growth rates are all known to impact the physical stability of an ASD. Non-covalent interactions (NCI) between the drug and polymer have also been widely reported to influence product shelf-life. In this review, the relationship between thermodynamic/kinetic factors and adhesive NCI is assessed. Various types of NCIs reported to stabilize ASDs are described, and their role in affecting physical stability is examined. Finally, NCIs that have not yet been widely explored in ASD formulations, but may potentially impact their physical stability are also briefly described. This review aims to stimulate further theoretical and practical exploration of various NCIs and their applications in ASD formulations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.

    Article  CAS  Google Scholar 

  2. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  3. Greco S, Authelin JR, Leveder C, Segalini A. A practical method to predict physical stability of amorphous solid dispersions. Pharm Res. 2012;29(10):2792–805.

    Article  CAS  PubMed  Google Scholar 

  4. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.

    Article  CAS  PubMed  Google Scholar 

  5. Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci. 2009;37(3–4):492–8.

    Article  CAS  PubMed  Google Scholar 

  6. Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e79–85.

    Article  Google Scholar 

  7. Anane-Adjei AB, Jacobs E, Nash SC, Askin S, Soundararajan R, Kyobula M, et al. Amorphous solid dispersions: utilization and challenges in preclinical drug development within AstraZeneca. Int J Pharm. 2021;614: 121387.

    Article  PubMed  Google Scholar 

  8. Zhang J, Han R, Chen W, Zhang W, Li Y, Ji Y, et al. Analysis of the literature and patents on solid dispersions from 1980 to 2015. Molecules. 2018;23(7):1697.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Teja SB, Patil SP, Shete G, Patel S, Bansal AK. Drug-excipient behavior in polymeric amorphous solid dispersions. J Excip Food Chem. 2016;4(3):70–94.

    Google Scholar 

  10. Tan DK, Davis DA, Miller DA, Williams RO, Nokhodchi A. Innovations in thermal processing: hot-melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2020;21(8):312.

    Article  CAS  PubMed  Google Scholar 

  11. Mistry P, Suryanarayanan R. Strength of drug–polymer interactions: implications for crystallization in dispersions. Cryst Growth Des. 2016;16(9):5141–9.

    Article  CAS  Google Scholar 

  12. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    Article  CAS  PubMed  Google Scholar 

  13. Mohapatra S, Samanta S, Kothari K, Mistry P, Suryanarayanan R. Effect of polymer molecular weight on the crystallization behavior of indomethacin amorphous solid dispersions. Cryst Growth Des. 2017;17(6):3142–50.

    Article  CAS  Google Scholar 

  14. Sarpal K, Delaney S, Zhang GGZ, Munson EJ. Phase behavior of amorphous solid dispersions of felodipine: homogeneity and drug–polymer interactions. Mol Pharm. 2019;16(12):4836–51.

    Article  CAS  PubMed  Google Scholar 

  15. Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    Article  CAS  PubMed  Google Scholar 

  16. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  CAS  PubMed  Google Scholar 

  17. Thakral S, Thakral NK. Prediction of drug–polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci. 2013;102(7):2254–63.

    Article  CAS  PubMed  Google Scholar 

  18. Tao J, Sun Y, Zhang GGZ, Yu L. Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res. 2009;26(4):855–64.

    Article  CAS  PubMed  Google Scholar 

  19. Moseson DE, Taylor LS. The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. Int J Pharm. 2018;553(1–2):454–66.

    Article  CAS  PubMed  Google Scholar 

  20. Wlodarski K, Sawicki W, Kozyra A, Tajber L. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA. Eur J Pharm Biopharm. 2015;96:237–46.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2013;11(1):329–37.

    Article  PubMed  Google Scholar 

  22. Kapourani A, Eleftheriadou K, Kontogiannopoulos KN, Barmpalexis P. Evaluation of rivaroxaban amorphous solid dispersions physical stability via molecular mobility studies and molecular simulations. Eur J Pharm Sci. 2020;157: 105642.

    Article  PubMed  Google Scholar 

  23. Huang C, Powell CT, Sun Y, Cai T, Yu L. Effect of low-concentration polymers on crystal growth in molecular glasses: a controlling role for polymer segmental mobility relative to host dynamics. J Chem Phys B. 2017;121(8):1963–71.

    Article  CAS  Google Scholar 

  24. Powell CT, Cai T, Hasebe M, Gunn EM, Gao P, Zhang G, et al. Low-concentration polymers inhibit and accelerate crystal growth in organic glasses in correlation with segmental mobility. J Phys Chem B. 2013;117(35):10334–41.

    Article  CAS  PubMed  Google Scholar 

  25. Cai T, Zhu L, Yu L. Crystallization of organic glasses: effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine. Pharm Res. 2011;28(10):2458–66.

    Article  CAS  PubMed  Google Scholar 

  26. Kestur US, Lee H, Santiago D, Rinaldi C, Won Y-Y, Taylor LS. Effects of the molecular weight and concentration of polymer additives, and temperature on the melt crystallization kinetics of a small drug molecule. Cryst Growth Des. 2010;10(8):3585–95.

    Article  CAS  Google Scholar 

  27. Poornachary SK, Chia VD, Yani Y, Han G, Chow PS, Tan RBH. Anisotropic crystal growth inhibition by polymeric additives: impact on modulation of naproxen crystal shape and size. Cryst Growth Des. 2017;17(9):4844–54.

    Article  CAS  Google Scholar 

  28. Trasi NS, Taylor LS. Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. CrystEngComm. 2012;14(16):5188–97.

    Article  CAS  Google Scholar 

  29. Que C, Qi Q, Zemlyanov DY, Mo H, Deac A, Zeller M, et al. Evidence for halogen bonding in amorphous solid dispersions. Cryst Growth Des. 2020;20(5):3224–35.

    Article  CAS  Google Scholar 

  30. Que C, Deac A, Zemlyanov DY, Qi Q, Indulkar AS, Gao Y, et al. Impact of drug–polymer intermolecular interactions on dissolution performance of copovidone-based amorphous solid dispersions. Mol Pharm. 2021;18(9):3496–508.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki H, Iwata M, Ito M, Noguchi S. X-ray absorption near-edge spectroscopy analysis of indomethacin in crystalline forms and in amorphous solid dispersions. Mol Pharm. 2021;18(9):3475–83.

    Article  CAS  PubMed  Google Scholar 

  32. Bookwala M, Buckner IS, Wildfong PLD. Implications of coexistent halogen and hydrogen bonds in amorphous solid dispersions on drug solubility, miscibility, and mobility. Mol Pharm. 2022;19(11):3959–72.

    Article  CAS  PubMed  Google Scholar 

  33. Bellantone RA. Fundamentals of amorphous systems: thermodynamic aspects. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous solid dispersions: theory and practice. Berlin, Germany: Springer; 2014. p. 3-34.

  34. Sun Y, Tao J, Zhang GGZ, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99(9):4023–31.

    Article  CAS  PubMed  Google Scholar 

  35. Knopp MM, Olesen NE, Holm P, Langguth P, Holm R, Rades T. Influence of polymer molecular weight on drug–polymer solubility: a comparison between experimentally determined solubility in PVP and prediction derived from solubility in monomer. J Pharm Sci. 2015;104(9):2905–12.

    Article  CAS  PubMed  Google Scholar 

  36. Marsac PJ, Li T, Taylor LS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26(1):139–51.

    Article  CAS  PubMed  Google Scholar 

  37. Flory PJ. Thermodynamics of high polymer solutions. J Chem Phys. 1942;10(1):51–61.

    Article  CAS  Google Scholar 

  38. Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res. 2006;23(10):2306–16.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Y, Inbar P, Chokshi HP, Malick AW, Choi DS. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory. J Pharm Sci. 2011;100(8):3196–207.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug–polymer–water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576–89.

    Article  CAS  PubMed  Google Scholar 

  41. Manzoor A, Pandey S, Chakraborty D, Phillpot SR, Aidhy DS. Entropy contributions to phase stability in binary random solid solutions. Npj Comput Mater. 2018;4(1):47.

    Article  Google Scholar 

  42. Rumondor ACF, Taylor LS. Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm. 2010;7(2):477–90.

    Article  CAS  PubMed  Google Scholar 

  43. DeBoyace K, Wildfong PLD. The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J Pharm Sci. 2018;107(1):57–74.

    Article  CAS  PubMed  Google Scholar 

  44. Gumireddy A, Bookwala M, Zhou D, Wildfong PLD, Buckner IS. Investigating and comparing the applicability of the R3m molecular descriptor and solubility parameter estimation approaches in predicting dispersion formation potential of APIs in a random co-polymer polyvinylpyrrolidone vinyl acetate and its homopolymer. J Pharm Sci. 2022;112(1):318–27.

    Article  PubMed  Google Scholar 

  45. Shan X, Moghul MA, Williams AC, Khutoryanskiy VV. Mutual effects of hydrogen bonding and polymer hydrophobicity on ibuprofen crystal inhibition in solid dispersions with poly (N-vinyl pyrrolidone) and poly (2-oxazolines). Pharmaceutics. 2021;13(5):659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91(8):1863–72.

    Article  CAS  PubMed  Google Scholar 

  47. Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B. 1999;103(20):4113–21.

    Article  CAS  Google Scholar 

  48. Kissi EO, Grohganz H, Lobmann K, Ruggiero MT, Zeitler JA, Rades T. Glass-transition temperature of the beta-relaxation as the major predictive parameter for recrystallization of neat amorphous drugs. J Phys Chem B. 2018;122(10):2803–8.

    Article  CAS  PubMed  Google Scholar 

  49. Aso Y, Yoshioka S. Molecular mobility of nifedipine−PVP and phenobarbital−PVP solid dispersions as measured by 13C-NMR spin-lattice relaxation time. J Pharm Sci. 2006;95(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  50. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm. 2014;11(11):4228–37.

    Article  CAS  PubMed  Google Scholar 

  51. Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly (vinylpyrrolidone) solid dispersions. J Pharm Sci. 2004;93(2):384–91.

    Article  CAS  PubMed  Google Scholar 

  52. Kothari K, Ragoonanan V, Suryanarayanan R. The role of drug–polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm. 2015;12(1):162–70.

    Article  CAS  PubMed  Google Scholar 

  53. Sahoo A, Suryanarayanan R, Siegel RA. Stabilization of amorphous drugs by polymers: the role of overlap concentration (C*). Mol Pharm. 2020;17(11):4401–6.

    Article  CAS  PubMed  Google Scholar 

  54. Xiang T-X, Anderson BD. Effects of molecular interactions on miscibility and mobility of ibuprofen in amorphous solid dispersions with various polymers. J Pharm Sci. 2019;108(1):178–86.

    Article  CAS  PubMed  Google Scholar 

  55. Rams-Baron M, Jachowicz R, Boldyreva E, Zhou D, Jamroz W, Paluch M. Physical instability: a key problem of amorphous drugs. In: Rams-Baron M, Jachowicz R, Boldyreva E, Zhou D, Jamroz W, Paluch M, editors. Amorphous drugs: benefits and challenges: Springer; 2018. p. 107–57.

  56. Sun Y, Zhu L, Wu T, Cai T, Gunn EM, Yu L. Stability of amorphous pharmaceutical solids: crystal growth mechanisms and effect of polymer additives. AAPS J. 2012;14(3):380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi Q, Li F, Yeh S, Wang Y, Xin J. Physical stability of amorphous pharmaceutical solids: nucleation, crystal growth, phase separation and effects of the polymers. Int J Pharm. 2020;590: 119925.

    Article  CAS  PubMed  Google Scholar 

  58. Kestur US, Taylor LS. Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. CrystEngComm. 2010;12(8):2390–7.

    Article  CAS  Google Scholar 

  59. Krishna Kumar NS, Suryanarayanan R. Crystallization propensity of amorphous pharmaceuticals: kinetics and thermodynamics. Mol Pharm. 2022;19(2):472–83.

    Article  CAS  PubMed  Google Scholar 

  60. Frank DS, Matzger AJ. Probing the interplay between amorphous solid dispersion stability and polymer functionality. Mol Pharm. 2018;15(7):2714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao X, Huang C, Benson EG, Shi C, Zhang GGZ, Yu L. Effect of polymers on crystallization in glass-forming molecular liquids: equal suppression of nucleation and growth and master curve for prediction. Cryst Growth Des. 2019;20(1):237–44.

    Article  Google Scholar 

  62. Somashekarappa H, Prakash Y, Hemalatha K, Demappa T, Somashekar R. Preparation and characterization of HPMC/PVP blend films plasticized with sorbitol. Indian J Mat Sci. 2013;2013: 307514.

    Google Scholar 

  63. Liu L, Chen L, Müllers W, Serno P, Qian F. Water-resistant drug–polymer interaction contributes to the formation of nano-species during the dissolution of felodipine amorphous solid dispersions. Mol Pharm. 2022;19(8):2888–99.

    Article  CAS  PubMed  Google Scholar 

  64. Mistry P, Amponsah-Efah KK, Suryanarayanan R. Rapid assessment of the physical stability of amorphous solid dispersions. Cryst Growth Des. 2017;17(5):2478–85.

    Article  CAS  Google Scholar 

  65. Simões MF, Pereira A, Cardoso S, Cadonau S, Werner K, Pinto RMA, et al. Five-stage approach for a systematic screening and development of etravirine amorphous solid dispersions by hot-melt extrusion. Mol Pharm. 2019;17(2):554–68.

    Google Scholar 

  66. Meng F, Jing Z, Ferreira R, Ren P, Zhang F. Investigating the association mechanism between rafoxanide and povidone. Langmuir. 2018;34(46):13971–8.

    Article  CAS  PubMed  Google Scholar 

  67. Qi Q, Taylor LS. Improved dissolution of an enteric polymer and its amorphous solid dispersions by polymer salt formation. Int J Pharm. 2022;622: 121886.

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Pang H, Guo Z, Lin L, Dong Y, Li G, et al. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol. 2014;66(2):148–66.

    Article  CAS  PubMed  Google Scholar 

  69. Amponsah-Efah KK, Mistry P, Eisenhart R, Suryanarayanan R. The influence of the strength of drug–polymer interactions on the dissolution of amorphous solid dispersions. Mol Pharm. 2020;18(1):174–86.

    Article  PubMed  Google Scholar 

  70. Loya JD, Li SJ, Unruh DK, Hutchins KM. Application of the pKa rule to synthesize salts of bezafibrate. Supramol Chem. 2019;31(8):558–64.

    Article  CAS  Google Scholar 

  71. Song Y, Zemlyanov D, Chen X, Su Z, Nie H, Lubach JW, et al. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy. Int J Pharm. 2016;514(2):456–64.

    Article  CAS  PubMed  Google Scholar 

  72. Manjunatha NK, Alzubaidy NN, Likhitha U, Manjunatha M, Saravanan K, Krishna Reddy BV, et al. A potent anesthetic drug salt: experimental and computational studies. J Mol Struct. 2022;1263: 133049.

    Article  Google Scholar 

  73. Fung MH, DeVault M, Kuwata KT, Suryanarayanan R. Drug-excipient interactions: effect on molecular mobility and physical stability of ketoconazole–organic acid coamorphous systems. Mol Pharm. 2018;15(3):1052–61.

    Article  CAS  PubMed  Google Scholar 

  74. Sippel KH, Quiocho FA. Ion–dipole interactions and their functions in proteins. Protein Sci. 2015;24(7):1040–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oh KT, Bronich TK, Bromberg L, Hatton TA, Kabanov AV. Block ionomer complexes as prospective nanocontainers for drug delivery. J Control Release. 2006;115(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  76. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem. 2011;83(8):1637–41.

    Article  CAS  Google Scholar 

  77. Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41(1):48–76.

    Article  CAS  Google Scholar 

  78. Ma JC, Dougherty DA. The cation− π interaction. Chem Rev. 1997;97(5):1303–24.

    Article  CAS  PubMed  Google Scholar 

  79. Mahadevi AS, Sastry GN. Cation− π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev. 2013;113(3):2100–38.

    Article  CAS  PubMed  Google Scholar 

  80. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2013;56(4):1363–88.

    Article  CAS  PubMed  Google Scholar 

  81. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Halogen bonding in supramolecular chemistry. Angew Chem Int Ed. 2008;47(33):6114–27.

    Article  CAS  Google Scholar 

  82. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, et al. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem. 2013;85(8):1711–3.

    Article  CAS  Google Scholar 

  83. Aakeroy CB, Bryce DL, Desiraju GR, Frontera A, Legon AC, Nicotra F, et al. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl Chem. 2019;91(11):1889–92.

    Article  CAS  Google Scholar 

  84. Alkorta I, Elguero J, Frontera A. Not only hydrogen bonds: other noncovalent interactions. Crystals. 2020;10(3):180.

    Article  CAS  Google Scholar 

  85. Israelachvili JN. Interactions involving polar molecules; Special interactions: hydrogen-bonding, hydrophobic and hydrophilic interactions. In: Israelachvili JN, editor. Intermolecular and surface forces: Academic Press; 2015. p. 57–60; 128–35.

  86. Yamini D, Suvetha RJ. Raman and DFT investigations on the interaction of binary liquid mixtures of acetone with polar and non-polar solvents. J Mol Liq. 2022;348: 118074.

    Article  Google Scholar 

  87. Frank DS, Matzger AJ. Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical. Mol Pharm. 2019;16(2):682–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem. 2010;53(14):5061–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Geneidi AS, Ali AA, Salama RB. Solid dispersions of nitrofurantoin, ethotoin, and coumarin with polyethylene glycol 6000 and their coprecipitates with povidone 25,000. J Pharm Sci. 1978;67(1):114–6.

    Article  CAS  PubMed  Google Scholar 

  90. Doherty C, York P. Evidence for solid- and liquid-state interactions in a furosemide-polyvinylpyrrolidone solid dispersion. J Pharm Sci. 1987;76(9):731–7.

    Article  CAS  PubMed  Google Scholar 

  91. Yoshioka M, Hancock BC, Zografi G. Inhibition of indomethacin crystallization in poly (vinylpyrrolidone) coprecipitates. J Pharm Sci. 1995;84(8):983–6.

    Article  CAS  PubMed  Google Scholar 

  92. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.

    Article  CAS  PubMed  Google Scholar 

  93. Wegiel LA, Zhao Y, Mauer LJ, Edgar KJ, Taylor LS. Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability. Pharm Dev Technol. 2014;19(8):976–86.

    Article  CAS  PubMed  Google Scholar 

  94. Zeglinski J, Kuhs M, Khamar D, Hegarty AC, Devi RK, Rasmuson ÅC. Crystal nucleation of tolbutamide in solution: relationship to solvent, solute conformation, and solution structure. Chem Eur J. 2018;24(19):4916–26.

    Article  CAS  PubMed  Google Scholar 

  95. Kestur US, Van Eerdenbrugh B, Taylor LS. Influence of polymer chemistry on crystal growth inhibition of two chemically diverse organic molecules. CrystEngComm. 2011;13(22):6712–8.

    Article  CAS  Google Scholar 

  96. Purohit HS, Taylor LS. Phase separation kinetics in amorphous solid dispersions upon exposure to water. Mol Pharm. 2015;12(5):1623–35.

    Article  CAS  PubMed  Google Scholar 

  97. Chen Y, Chen H, Wang S, Liu C, Qian F. A single hydrogen to fluorine substitution reverses the trend of surface composition enrichment of sorafenib amorphous solid dispersion upon moisture exposure. Pharm Res. 2019;36(7):105.

    Article  PubMed  Google Scholar 

  98. Liu C, Xu C-Q, Yu J, Pui Y, Chen H, Wang S, et al. Impact of a single hydrogen substitution by fluorine on the molecular interaction and miscibility between sorafenib and polymers. Mol Pharm. 2018;16(1):318–26.

    Article  PubMed  Google Scholar 

  99. Willis CR Jr, Banker GS. Polymer–drug interacted systems in the physicochemical design of pharmaceutical dosage forms I: drug salts with PVM/MA and with a PVM/MA hemi-ester. J Pharm Sci. 1968;57(9):1598–603.

    Article  CAS  PubMed  Google Scholar 

  100. Bookwala M, Thipsay P, Ross S, Zhang F, Bandari S, Repka MA. Preparation of a crystalline salt of indomethacin and tromethamine by hot melt extrusion technology. Eur J Pharm Biopharm. 2018;131(10):109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gui Y, McCann EC, Yao X, Li Y, Jones KJ, Yu L. Amorphous drug–polymer salt with high stability under tropical conditions and fast dissolution: the case of clofazimine and poly (acrylic acid). Mol Pharm. 2021;18(3):1364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mesallati H, Umerska A, Paluch KJ, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14(7):2209–23.

    Article  CAS  PubMed  Google Scholar 

  103. Dedroog S, Huygens C, Van den Mooter G. Chemically identical but physically different: a comparison of spray drying, hot melt extrusion and cryo-milling for the formulation of high drug loaded amorphous solid dispersions of naproxen. Eur J Pharm Biopharm. 2019;135:1–12.

    Article  CAS  PubMed  Google Scholar 

  104. Kelsall KN, Foroughi LM, Frank DS, Schenck L, LaBuda A, Matzger AJ. Structural modifications of polyethylenimine to control drug loading and release characteristics of amorphous solid dispersions. Mol Pharm. 2023;20(3):1779–87.

    Article  CAS  PubMed  Google Scholar 

  105. Li Y, Yu J, Hu S, Chen Z, Sacchetti M, Sun CC, et al. Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability: the case of chitosan-coated indomethacin. Mol Pharm. 2019;16(3):1305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Imai T, Shiraishi S, Saitô H, Otagiri M. Interaction of indomethacin with low molecular weight chitosan, and improvements of some pharmaceutical properties of indomethacin by low molecular weight chitosans. Int J Pharm. 1991;67(1):11–20.

    Article  CAS  Google Scholar 

  107. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12(3):261–9.

    Article  PubMed  Google Scholar 

  108. Mistry P, Mohapatra S, Gopinath T, Vogt FG, Suryanarayanan R. Role of the strength of drug–polymer interactions on the molecular mobility and crystallization inhibition in ketoconazole solid dispersions. Mol Pharm. 2015;12(9):3339–50.

    Article  CAS  PubMed  Google Scholar 

  109. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou D, Schmitt EA, Law D, Brackemeyer PJ, Zhang GGZ. Assessing physical stability risk using the amorphous classification system (ACS) based on simple thermal analysis. Mol Pharm. 2019;16(6):2742–54.

    Article  CAS  PubMed  Google Scholar 

  111. Liao R, Zhu M, Zhou X, Zhang F, Yan J, Zhu W, et al. Molecular dynamics study of the disruption of H-bonds by water molecules and its diffusion behavior in amorphous cellulose. Mod Phys Lett B. 2012;26(14):1250088.

    Article  Google Scholar 

  112. Shan X, Williams AC, Khutoryanskiy VV. Polymer structure and property effects on solid dispersions with haloperidol: Poly (N-vinyl pyrrolidone) and poly (2-oxazolines) studies. Int J Pharm. 2020;590: 119884.

    Article  CAS  PubMed  Google Scholar 

  113. Li M, Meng F, Tsutsumi Y, Amoureux J-P, Xu W, Lu X, et al. Understanding molecular interactions in rafoxanide-povidone amorphous solid dispersions from ultrafast magic angle spinning NMR. Mol Pharm. 2020;17(6):2196–207.

    Article  CAS  PubMed  Google Scholar 

  114. Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of MK-0591 and poly (vinylpyrrolidone) polymers. J Pharm Sci. 2000;89(10):1325–34.

    Article  CAS  PubMed  Google Scholar 

  115. Tong P, Zografi G. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J Pharm Sci. 2001;90(12):1991–2004.

    Article  CAS  PubMed  Google Scholar 

  116. Hiew TN, Taylor LS. Combining drug salt formation with amorphous solid dispersions–a double edged sword. J Control Release. 2022;352:47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bock K, Lemieux RU. The conformational properties of sucrose in aqueous solution: intramolecular hydrogen-bonding. Carbohydr Res. 1982;100(1):63–74.

    Article  CAS  Google Scholar 

  118. Yang F, Su Y, Zhu L, Brown CD, Rosen LA, Rosenberg KJ. Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions. Int J Pharm. 2016;500(1–2):20–31.

    Article  CAS  PubMed  Google Scholar 

  119. Politzer P, Lane P, Concha MC, Ma Y, Murray JS. An overview of halogen bonding. J Mol Model. 2007;13(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  120. Hakkert SB, Gräfenstein J, Erdelyi M. The 15N NMR chemical shift in the characterization of weak halogen bonding in solution. Faraday Discuss. 2017;203(10):333–46.

    Article  CAS  PubMed  Google Scholar 

  121. Hauchecorne D, Szostak R, Herrebout WA, van der Veken BJ. C-X⋅⋅⋅O Halogen bonding: interactions of trifluoromethyl halides with dimethyl ether. ChemPhysChem. 2009;10(12):2105–15.

    Article  CAS  PubMed  Google Scholar 

  122. Nonappa, Lahtinen M, Kolehmainen E, Haarala J, Shevchenko A. Evidence of weak halogen bonding: new insights on itraconazole and its succinic acid cocrystal. Cryst Growth Des. 2012;13(1):346–51.

  123. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, et al. The halogen bond. Chem Rev. 2016;116(4):2478–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baldrighi M, Cavallo G, Chierotti MR, Gobetto R, Metrangolo P, Pilati T, et al. Halogen bonding and pharmaceutical cocrystals: the case of a widely used preservative. Mol Pharm. 2013;10(5):1760–72.

    Article  CAS  PubMed  Google Scholar 

  125. DeBoyace K, Bookwala M, Buckner IS, Zhou D, Wildfong PLD. Interpreting the physicochemical meaning of a molecular descriptor which is predictive of amorphous solid dispersion formation in polyvinylpyrrolidone vinyl acetate. Mol Pharm. 2022;19(1):303–17.

    Article  CAS  PubMed  Google Scholar 

  126. Kwon MS, Lee D, Seo S, Jung J, Kim J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew Chem Int Ed. 2014;53(42):11177–81.

    Article  CAS  Google Scholar 

  127. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the dissolution mechanism of ritonavir-copovidone amorphous solid dispersions: importance of congruent release for enhanced performance. Mol Pharm. 2019;16(3):1327–39.

    Article  CAS  PubMed  Google Scholar 

  128. Indulkar AS, Waters JE, Mo H, Gao Y, Raina SA, Zhang GGZ, et al. Origin of nanodroplet formation upon dissolution of an amorphous solid dispersion: a mechanistic isotope scrambling study. J Pharm Sci. 2017;106(8):1998–2008.

    Article  CAS  PubMed  Google Scholar 

  129. Yang R, Mann AKP, Van Duong T, Ormes JD, Okoh GA, Hermans A, et al. Drug release and nanodroplet formation from amorphous solid dispersions: insight into the roles of drug physicochemical properties and polymer selection. Mol Pharm. 2021;18(5):2066–81.

    Article  CAS  PubMed  Google Scholar 

  130. Al-Obaidi H, Buckton G. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. AAPS PharmSciTech. 2009;10(4):1172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Newman A, Zografi G. Considerations in the development of physically stable high drug load API-polymer amorphous solid dispersions in the glassy state. J Pharm Sci. 2022;112(1):8–18.

    Article  PubMed  Google Scholar 

  132. Robertson CC, Wright JS, Carrington EJ, Perutz RN, Hunter CA, Brammer L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem Sci. 2017;8(8):5392–8.

  133. Robertson CC, Perutz RN, Brammer L, Hunter CA. A solvent-resistant halogen bond. Chem Sci. 2014;5(11):4179–83.

    Article  CAS  Google Scholar 

  134. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4(2):268–76.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604–10.

    Article  CAS  PubMed  Google Scholar 

  136. Murray JS, Lane P, Clark T, Riley KE, Politzer P. σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model. 2012;18(2):541–8.

    Article  CAS  PubMed  Google Scholar 

  137. Brammer L. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion. Faraday Discuss. 2017;203(10):485–507.

    Article  CAS  PubMed  Google Scholar 

  138. Murray JS, Politzer P. Hydrogen bonding: a coulombic σ-hole interaction. J Indian Inst Sci. 2020;100(1):21–30.

    Article  Google Scholar 

  139. Fourmigué M, Dhaka A. Chalcogen bonding in crystalline diselenides and selenocyanates: from molecules of pharmaceutical interest to conducting materials. Coord Chem Rev. 2020;403: 213084.

    Article  Google Scholar 

  140. Lee LM, Tsemperouli M, Poblador-Bahamonde AI, Benz S, Sakai N, Sugihara K, et al. Anion transport with pnictogen bonds in direct comparison with chalcogen and halogen bonds. J Am Chem Soc. 2019;141(2):810–4.

    Article  CAS  PubMed  Google Scholar 

  141. Bauzá A, García-Llinás X, Frontera A. Charge-assisted triel bonding interactions in solid state chemistry: a combined computational and crystallographic study. Chem Phys Lett. 2016;666:73–8.

    Article  Google Scholar 

  142. Kumar V, Scilabra P, Politzer P, Terraneo G, Daolio A, Fernandez-Palacio F, et al. Tetrel and pnictogen bonds complement hydrogen and halogen bonds in framing the interactional landscape of barbituric acids. Cryst Growth Des. 2020;21(1):642–52.

    Article  Google Scholar 

  143. Scilabra P, Terraneo G, Resnati G. The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc Chem Res. 2019;52(5):1313–24.

    Article  CAS  PubMed  Google Scholar 

  144. Cubero E, Luque FJ, Orozco M. Is polarization important in cation-π interactions? Proc Natl Acad Sci USA. 1998;95(11):5976–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA. A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem. 2015;58(11):4383–438.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Peter L. D. Wildfong.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bookwala, M., Wildfong, P.L.D. The Implications of Drug-Polymer Interactions on the Physical Stability of Amorphous Solid Dispersions. Pharm Res 40, 2963–2981 (2023). https://doi.org/10.1007/s11095-023-03547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03547-4

Keywords

Navigation