Skip to main content
Log in

Effects of Intranasal Epinephrine on Cerebrospinal Fluid Epinephrine Pharmacokinetics, Nasal Mucosa, Plasma Epinephrine Pharmacokinetics, and Cardiovascular Changes

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We aimed to assess intranasal (IN) epinephrine effects on cerebrospinal fluid (CSF) absorption, nasal mucosa quality, plasma epinephrine pharmacokinetics (PK), and cardiovascular changes in dogs.

Methods

CSF epinephrine concentration was measured and nasal mucosa quality was evaluated after IN epinephrine 4 mg and one or two 4 mg doses (21 min apart), respectively. Maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the curve from 0 to 120 min [AUC0–120], and cardiovascular effects were evaluated after epinephrine IN (4 and 5 mg) and intramuscular (IM; 0.3 mg). Clinical observations were assessed.

Results

After epinephrine IN, there were no changes in CSF epinephrine or nasal mucosa. Cmax, Tmax, and AUC1–120 were similar following epinephrine IN and IM. Epinephrine IN versus IM increased plasma epinephrine at 1 min (mean ± SEM, 1.15 ± 0.48 for 4 mg IN and 1.7 ± 0.72 for 5 mg IN versus 0.47 ± 0.11 ng/mL for 0.3 mg IM). Epinephrine IN and IM produced similar heart rate and ECG results. Clinical observations included salivation and vomiting.

Conclusions

Epinephrine IN did not alter CSF epinephrine or nasal tissue and had similar cardiovascular effects as epinephrine IM. Epinephrine IN rapidly increased plasma epinephrine concentration versus epinephrine IM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC0–120 :

area under the curve from 0 to 120 min

AUC0–24 :

area under the curve from 0 to 24 h; bpm, beats per minute

Cmax :

maximum plasma concentration

CNS:

central nervous system

CSF:

cerebrospinal fluid

GLP:

good laboratory practice

IM:

intramuscular

IN:

intranasal

LC-MS/MS:

liquid chromatography tandem-mass spectrometry

MRTlast :

mean residence time

PK:

pharmacokinetics

SEM:

standard error of the mean

SMBS:

sodium metabisulfite

Tmax :

time to reach maximum plasma concentration

USDA:

United States Department of Agriculture

USP:

United States Pharmacopeia

References

  1. Lieberman P, Nicklas RA, Randolph C, Oppenheimer J, Bernstein D, Bernstein J, et al. Anaphylaxis--a practice parameter update 2015. Ann Allergy Asthma Immunol. 2015;115(5):341–84.

    Article  PubMed  Google Scholar 

  2. Sampson HA, Munoz-Furlong A, Campbell RL, Adkinson NF Jr, Bock SA, Branum A, et al. Second symposium on the definition and management of anaphylaxis: summary report--second National Institute of allergy and infectious disease/Food Allergy and Anaphylaxis Network symposium. Ann Emerg Med. 2006;47(4):373–80.

    Article  PubMed  Google Scholar 

  3. Simons FE, Ebisawa M, Sanchez-Borges M, Thong BY, Worm M, Tanno LK, et al. 2015 update of the evidence base: world allergy organization anaphylaxis guidelines. World Allergy Organ J. 2015;8(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Taylor BN, Cassagnol M. Alpha adrenergic receptors. StatPearls: Treasure Island, FL; 2019.

    Google Scholar 

  5. Sicherer SH, FER S. Section on Allergy and Immunology. Epinephrine for first-aid management of anaphylaxis. Pediatrics. 2017;139(3):e20164006.

    Article  PubMed  Google Scholar 

  6. Bellanti JA, Settipane RA. Quality of life issues ranging from the burden of ocular and nasal allergies to the anxiety associated with having to carry self-injectable epinephrine for insect sting allergy. Allergy Asthma Proc. 2014;35(3):195–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turner PJ, DunnGalvin A, Hourihane JO. The emperor has no symptoms: the risks of a blanket approach to using epinephrine autoinjectors for all allergic reactions. J Allergy Clin Immunol Pract. 2016;4(6):1143–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ku MS. Recent trends in specialty pharma business model. J Food Drug Anal. 2015;23(4):595–608.

    Article  PubMed  Google Scholar 

  9. Posner LS, Camargo CA Jr. Update on the usage and safety of epinephrine auto-injectors, 2017. Drug Healthc Patient Saf. 2017;9:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erdo F, Bors LA, Farkas D, Bajza A, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70.

    Article  CAS  PubMed  Google Scholar 

  11. Pires A, Fortuna A, Alves G, Falcao A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.

    Article  CAS  PubMed  Google Scholar 

  12. Pieper L, Wager J, Zernikow B. Intranasal fentanyl for respiratory distress in children and adolescents with life-limiting conditions. BMC Palliat Care. 2018;17(1):106.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Webster LR, Pantaleon C, Iverson M, Smith MD, Kinzler ER, Aigner S. Intranasal pharmacokinetics of morphine ARER, a novel abuse-deterrent formulation: results from a randomized, double-blind, four-way crossover study in nondependent, opioid-experienced subjects. Pain Res Manag. 2018;2018:7276021.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kerr D, Kelly AM, Dietze P, Jolley D, Barger B. Randomized controlled trial comparing the effectiveness and safety of intranasal and intramuscular naloxone for the treatment of suspected heroin overdose. Addiction. 2009;104(12):2067–74.

    Article  PubMed  Google Scholar 

  15. McDonald R, Lorch U, Woodward J, Bosse B, Dooner H, Mundin G, et al. Pharmacokinetics of concentrated naloxone nasal spray for opioid overdose reversal: phase I healthy volunteer study. Addiction. 2018;113(3):484–93.

    Article  PubMed  Google Scholar 

  16. Robinson A, Wermeling DP. Intranasal naloxone administration for treatment of opioid overdose. Am J Health Syst Pharm. 2014;71(24):2129–35.

    Article  CAS  PubMed  Google Scholar 

  17. Al Harthi S, Alavi SE, Radwan MA, El Khatib MM, AlSarra IA. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer's disease. Sci Rep. 2019;9(1):9563.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krieter P, Gyaw S, Crystal R, Skolnick P. Fighting fire with fire: development of intranasal nalmefene to treat synthetic opioid overdose. J Pharmacol Exp Ther. 2019;371:409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seaquist ER, Dulude H, Zhang XM, Rabasa-Lhoret R, Tsoukas GM, Conway JR, et al. Prospective study evaluating the use of nasal glucagon for the treatment of moderate to severe hypoglycaemia in adults with type 1 diabetes in a real-world setting. Diabetes Obes Metab. 2018;20(5):1316–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berg AK, Myrvik MJ, Van Ess PJ. Pharmacokinetics, pharmacodynamics, and tolerability of USL261, midazolam nasal spray: Randomized study in healthy geriatric and non-geriatric adults. Epilepsy Behav. 2017;71(Pt A):51–9.

  21. Anderson GM, Dover MA, Yang BP, Holahan JM, Shaywitz SE, Marchione KE, et al. Adrenomedullary function during cognitive testing in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2000;39(5):635–43.

    Article  CAS  PubMed  Google Scholar 

  22. Ohno I. Neuropsychiatry phenotype in asthma: psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation. Allergol Int. 2017;66S:S2–8.

    Article  PubMed  Google Scholar 

  23. Bastos DB, Sarafim-Silva BAM, Sundefeld M, Ribeiro AA, Brandao JDP, Biasoli ER, et al. Circulating catecholamines are associated with biobehavioral factors and anxiety symptoms in head and neck cancer patients. PLoS One. 2018;13(8):e0202515.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miyasaka T, Dobashi-Okuyama K, Takahashi T, Takayanagi M, Ohno I. The interplay between neuroendocrine activity and psychological stress-induced exacerbation of allergic asthma. Allergol Int. 2018;67(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  25. Ganger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10(3).

  26. Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res. 2013;3(1):42–62.

    Article  CAS  PubMed  Google Scholar 

  27. Dretchen KL, Mesa Z, Robben M, Slade D, Hill S, Croutch C, et al. Intranasal epinephrine in dogs: Pharmacokinetic and heart rate effects. Pharmacology Research & Perspectives. 2020;e00587.

  28. Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies. Guide for the care and use of laboratory animals, 8th edition. Washington, DC: National Academic Press; 2011.

  29. US Food and Drug Administration. Good Laboratory Practice for Nonclinical Laboratory Studies, 21 CFR Part 58 [Available from: http://academy.gmp-compliance.org/guidemgr/files/CFR_2018/CFR-2018-TITLE21-VOL1-PART58.PDF].

  30. Bailey AM, Baum RA, Horn K, Lewis T, Morizio K, Schultz A, et al. Review of intranasally administered medications for use in the emergency department. J Emerg Med. 2017;53(1):38–48.

    Article  PubMed  Google Scholar 

  31. Corrigan M, Wilson SS, Hampton J. Safety and efficacy of intranasally administered medications in the emergency department and prehospital settings. Am J Health Syst Pharm. 2015;72(18):1544–54.

    Article  CAS  PubMed  Google Scholar 

  32. Cooper GM. The cell: a molecular approach. 2nd edition. Sunderland, MA: Sinauer Associates; 2000.

  33. Kostrzewa RM. The blood-brain barrier for catecholamines - revisited. Neurotox Res. 2007;11(3–4):261–71.

    Article  CAS  PubMed  Google Scholar 

  34. Hummel T, Livermore A. Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health. 2002;75(5):305–13.

    Article  PubMed  Google Scholar 

  35. Bleske BE, Rice TL, Warren EW, Giacherio DA, Gilligan LJ, Massey KD, et al. Effect of dose on the nasal absorption of epinephrine during cardiopulmonary resuscitation. Am J Emerg Med. 1996;14(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  36. Bleske BE, Warren EW, Rice TL, Shea MJ, Amidon G, Knight P. Comparison of intravenous and intranasal administration of epinephrine during CPR in a canine model. Ann Emerg Med. 1992;21(9):1125–30.

    Article  CAS  PubMed  Google Scholar 

  37. Srisawat C, Nakponetong K, Benjasupattananun P, Suratannon C, Wachirutmanggur L, Boonchoo S, et al. A preliminary study of intranasal epinephrine administration as a potential route for anaphylaxis treatment. Asian Pac J Allergy Immunol. 2016;34(1):38–43.

    CAS  PubMed  Google Scholar 

  38. Brown JC, Tuuri RE, Akhter S, Guerra LD, Goodman IS, Myers SR, et al. Lacerations and embedded needles caused by epinephrine autoinjector use in children. Ann Emerg Med. 2016;67(3):307–15 e8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Dretchen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dretchen, K.L., Mesa, Z., Robben, M. et al. Effects of Intranasal Epinephrine on Cerebrospinal Fluid Epinephrine Pharmacokinetics, Nasal Mucosa, Plasma Epinephrine Pharmacokinetics, and Cardiovascular Changes. Pharm Res 37, 103 (2020). https://doi.org/10.1007/s11095-020-02829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02829-5

Key Words

Navigation