Skip to main content
Log in

Gastric pH and Gastric Residence Time in Fasted and Fed Conscious Cynomolgus Monkeys Using the Bravo® pH System

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To measure fasted and fed gastric pH and gastric residence time (GRT) in Cynomolgus monkeys using Bravo® radiotelemetry capsules.

Methods

Continuous pH measurements were recorded with Bravo® capsules, which were either attached to the monkeys’ stomach or administered as free capsules. Meals (either slurry or standard), were administered at designated times with monkeys chair-restrained during slurry meal ingestion.

Results

From the attached capsule studies, the fasted gastric pH (∼1.9–2.2) was consistent among monkeys. Under fasted conditions, pH spikes were infrequently observed (once every 7.9 min to 3.6 h) with peaks reaching pH 9.4 and having short durations (<1 min). After feeding, the gastric pH rose quickly and remained alkaline for approximately 4.5–7.5 h before returning to baseline. Although significantly different (p < 0.05), there was overlap between the fasted (153 ± 87 min) and fed (436 ± 265 (slurry) and 697 ± 193 (standard) min) GRT due to considerable inter- and intra-subject variability.

Conclusions

Fasted gastric pH was similar between monkeys and literature human values. After a meal, the monkey gastric pH was elevated for a longer duration than that in human. The monkey GRT appears longer than that observed in human under both fasted and fed conditions, although this is likely dependent on the Bravo® capsule size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

FDA:

Food and Drug Administration

GERD:

gastroesophageal reflux disease

GRT:

gastric residence time

IQR:

interquartile range

MMC:

migrating myoelectrical complex

Q1 :

25% quartile

Q3 :

75% quartile

RMSE:

root mean squared error

SD:

standard deviation

References

  1. L. F. Prescott. Gastrointestinal absorption of drugs. Med. Clin. North Am. 58:907–915 (1974).

    PubMed  CAS  Google Scholar 

  2. P. Lelawongs, J. A. Barone, J. L. Colaizzi, A. T. Hsuan, W. Mechlinski, R. Legendre, and J. Guarnieri. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin. Pharm. 7:228–235 (1988).

    PubMed  CAS  Google Scholar 

  3. J. A. Carlson, H. J. Mann, and D. M. Canafax. Effect of pH on disintegration and dissolution of ketoconazole tablets. Am. J. Health Syst. Pharm. 40:1334–1336 (1983).

    CAS  Google Scholar 

  4. V. I. Vashi and M. C. Meyer. Effect of pH on the in vitro dissolution and in vivo absorption of controlled-released theophylline in dogs. J. Pharm. Sci. 77:760–764 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. H. Ogata, N. Aoyagi, N. Kaniwa, and A. Ejima. Effect of food on bioavailability of metronidazole from sugar-coated tablets having different dissolution rates in subjects with low gastric acidity. Int. J. Clin. Pharmacol. Ther. Toxicol. 24:279–282 (1986).

    PubMed  CAS  Google Scholar 

  6. N. Aoyagi, H. Ogata, N. Kaniwa, M. Koibuchi, T. Shibazaki, A. Ejima, M. Mizobe, K. Kohno, and M. Samejima. Bioavailability of sugar-coated tablets of thiamine disulfide in humans. I. Effect of gastric acidity and in vivo-in vitro correlation. Chem. Pharm. Bull. 34:281–291 (1986).

    PubMed  CAS  Google Scholar 

  7. H. Ogata, N. Aoyagi, N. Kaniwa, A. Ejima, N. Sekine, M. Kitamura, and Y. Inoue. Gastric acidity dependent bioavailability of cinnarizine from two commercial capsules in healthy volunteers. Int. J. Pharm. 29:113–120 (1986).

    Article  CAS  Google Scholar 

  8. H. Ogata, N. Aoyagi, M. Koibuchi, T. Shibazaki, and A. Ejima. Bioavailability of pyridoxal phosphate from enteric-coated tablets. II. Effects of gastric acidity of humans. Chem. Pharm. Bull. 33:3899–3905 (1985).

    Google Scholar 

  9. N. Aoyagi, H. Ogata, N. Kaniwa, and A. Ejima. Bioavailability of indomethacin capsules in humans (I) Bioavailability and effects of gastric acidity. Int. J. Clin. Pharmacol. Ther. Toxicol. 23:469–474 (1985).

    PubMed  CAS  Google Scholar 

  10. H. Ogata, N. Aoyagi, N. Kaniwa, T. Shibazaki, and A. Ejima. The bioavailability of diazepam from uncoated tablets in humans—Part II: effect of gastric fluid acidity. Int. J. Clin. Pharmacol. Ther. Toxicol. 20:166–170 (1982).

    PubMed  CAS  Google Scholar 

  11. Y.- H. Lee, B. A. Perry, S. Labruno, H. S. Lee, W. Stern, L. M. Falzone, and P. J. Sinko. Impact of regional intestinal pH modulation on absorption of peptide drugs: oral absorption studies of salmon calcitonin in beagle dogs. Pharm. Res. 16:1233–1239 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. T. Kosoglou, D. J. Kazierad, J. J. Schentag, J. E. Patrick, L. Heimark, E. Radwanski, D. Christopher, B. E. Flannery, and M. B. Affrime. Effect of food on the oral bioavailability of isosorbide-5-mononitrate administered as an extended-release tablet. J. Clin. Pharmacol. 35:151–158 (1995).

    PubMed  CAS  Google Scholar 

  13. H. Emori, K. Yamamoto, S. Yokohama, and T. Nishihata. Bioavailability of bropirimine 250 mg tablet in dogs: effect of food. J. Pharm. Pharmacol. 47:822–826 (1995).

    PubMed  CAS  Google Scholar 

  14. P. Mojaverian, M. L. Rocci Jr., D. P. Conner, W. B. Abrams, and P. H. Vlasses. Effect of food on the absorption of enteric-coated aspirin: correlation with gastric residence time. Clin. Pharmacol Ther. 41:11–17 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. C. Y. Lui, R. Oberle, D. Fleisher, and G. L. Amidon. Application of a radiotelemetric system to evaluate the performance of enteric-coated and plain aspirin tablets. J. Pharm. Sci. 75:469–474 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. W. A. Ritschel. In vivo animal models for bioavailability assessment. S.T.P. Pharma. 3:125–141 (1987).

    CAS  Google Scholar 

  17. J. B. Dressman and K. Yamada. Animal models for oral drug absorption. In P. Welling and F. L. Tse (eds.), Pharmaceutical Bioequivalence, Dekker, New York, 1991, pp 235–266.

    Google Scholar 

  18. J. H. Lin. Species similarities and differences in pharmacokinetics (Review). Drug Metab. Dispos. 23:1008–1021 (1995).

    PubMed  CAS  Google Scholar 

  19. T. T. Kararli. Comparison of the gastrointestinal anatomy, physiology and biochemistry of human and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–380 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. W. L. Chiou and P. W. Buehler. Comparison of oral absorption and bioavailability of drugs between monkey and human. Pharm. Res. 19:868–874 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. H. W. Smith. Observations on the flora of the alimentary tract of animals and factors affecting its composition. J. Path. Bact. 89:95–122 (1965).

    Article  PubMed  CAS  Google Scholar 

  22. C. A. Youngberg, J. Wlodyga, S. Schmaltz, J. B. Dressman. Radiotelemetric determination of gastrointestinal pH in four healthy beagles. Am. J. Vet. Res. 46:1516–1521 (1985).

    PubMed  CAS  Google Scholar 

  23. J. H. Meyer, J. Dressman, A. Fink, and G. Amidon. Effect of size and density on canine gastric emptying of nondigestible solids. Gastroenterology 89:805–813 (1985).

    PubMed  CAS  Google Scholar 

  24. I. Yamada and K. Haga. Measurement of gastric pH during digestion of a solid meal in dogs. Chem. Pharm. Bull. 38:1755–1756 (1990).

    PubMed  CAS  Google Scholar 

  25. I. Yamada, H. Mizuta, T. Goda, K. Goda, K. Haga, and K. Ogawa. Gastric pH profile and its control in fasting beagle dogs. Chem. Pharm. Bull. 37:2539–2541 (1989).

    PubMed  CAS  Google Scholar 

  26. M. Akimoto, N. Nagahata, A. Furuya, K. Fukushima, S. Higuchi, and T. Suwa. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur. J. Pharm. Biopharm. 49:99–102 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. B. W. Watson, S. J. Meldrum, H. C. Riddle, R. L. Brown, and G. E. Sladen. pH profile of gut as measured by radiotelemetry capsule. Br. Med. J. 2:104–106 (1972).

    Article  PubMed  CAS  Google Scholar 

  28. T. Zimmermann, H. laufen, R. A. Yeates, A. Lammerich, and A. Wildfeuer. Techniques for measuring gastrointestinal pH and transit, and their application in drug development. Int. J. Pharm. Med. 13:147–154 (1999).

    Google Scholar 

  29. T. Itoh, T. Higuchi, C. R. Garnder, and L. Caldwell. Effect of particle size and food on gastric residence time of non-disintegrating solids in beagle dogs. J. Pharm. Pharmacol. 38:801–806 (1986).

    PubMed  CAS  Google Scholar 

  30. T. L. Russell, R. R. Berardi, J. L. Barnett, L. C. Dermentzoglou, K. M. Jarvenpaa, S. P. Schmaltz, and J. B. Dressman. Upper gastric pH in seventy-nine healthy, elderly, North American men and women. Pharm. Res. 10:187-196 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. J. B. Dressman, R. R. Berardi, L. C. Dermentzoglou, T. L. Russell, S. P. Schmaltz, J. L. Barnett, and K. M. Jarvenpaa. Upper gastric (GI) pH in young, healthy men and women. Pharm. Res. 7:756–761 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. S. S. Davis, J. G. Hardy, and J. W. Fara. Transit of pharmaceutical dosage forms through the small intestine. Gut 27:886–892 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. P. Mojaverian, R. K. Fergusom, P. H. Vlasses, M. L. Rocci Jr., A. Oren, J. A. Fix, L. J. Caldwell, and C. Gardner. Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition. Gastroenterology 89:392–397 (1985).

    PubMed  CAS  Google Scholar 

  34. P. Mojaverian, P. H. Vlasses, P. E. Kellner, and M. L. Rocci Jr. Effects of Gender, posture, and age on gastric residence time of an indigestible solid: Pharmaceutical consideratgions. Pharm. Res. 5:639–644 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. P. Mojaverian, K. Chan, A. Desai, and V. John. Gastrointestinal transit of a solid indigestible capsule as measured by radiotelemetry and dual gamma scintigraphy. Pharm. Res. 6:719–724 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. P. Mojaverian, J. C. Reynolds, A. Ouyang, F. Wirth, P. E. Kellner, and P. H. Vlasses. Mechanism of gastric emptying of a nondisintegrating radiotelemetry capsule in man. Pharm. Res. 8:97–100 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. H. Kondo, T. Shinoda, H. Nakashima, T. Watanabe, and S. Yokohama. Characteristics of the gastric pH profiles of unfed and fed Cynomolgus monkeys as pharmaceutical product development subjects. Biopharm. Drug Dispos. 24:45–51 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. K. Ikegami, K. Tagawa, S. Narisawa, and T. Osawa. Suitability of the Cynomolgus monkey as an animal model for drug absorption studies of oral dosage forms from the viewpoint of gastrointestinal physiology. Biol. Pharm. Bull. 26:1442–1447 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. A. M. Merritt and J. H. Reed. Gastrointestinal function testing. In N. V. Anderson (ed.), Veterinary Gastroenterology, Lea & Febiger, Philadelphia, 1980, pp. 247–262.

    Google Scholar 

  40. C. Y. Lui, G. L. Amidon, R. R. Berardi, D. Fleisher, C. Youngberg, and J. B. Dressman. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J. Pharm. Sci. 75:27–274 (1986).

    Google Scholar 

  41. J. B. Dressman and G. L. Amidon. Radiotelemetric method for evaluating enteric coatings in vivo. J. Pharm. Sci. 73:935–938 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. J. E. Pandolfino, J. E. Richter, T. Ours, J. M. Guardino, J. Chapman, and P. J. Kahrilas. Ambulatory esophageal pH monitoring using a wireless system. Am. J. Gastroenterol. 98:740–749 (2003).

    Article  PubMed  Google Scholar 

  43. E. M. Ward, K. R. Devault, E. P. Bouras, M. E. Starck, H. C. Wolfsen, D. M. Davis, S. I. Nedrow, and S. R. Achem. Successful oesophageal pH monitoring with a catheter-free system. Ailment Pharmacol. Ther. 19:449–454 (2004).

    Article  CAS  Google Scholar 

  44. M. Bothwell, J. Phillips, and S. Bauer. Upper esophageal pH monitoring of children with the Bravo pH capsule. Laryngoscope 114:786–788 (2004).

    Article  PubMed  Google Scholar 

  45. J. E. Pandolfino and P. J. Kahrilas. Prolonged pH monitoring: bravo capsule. Gastrointest. Endoscopy Clin. N. Am. 15:307–318 (2005).

    Article  Google Scholar 

  46. M. Marchese, C. Spada, F. Iacopini, P. Familiari, S. G. Shah, A. Tringali, and G. Costamagna. Endoscopy 38:813–818 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. R. S. Gillies, J. M. Stratford, M. I. Booth, and T. C. B. Dehn. Oesophageal pH monitoring using the Bravo catheter-free radio capsule. Eur. J. Gastroenterol. Hepatol. 19:57–63 (2007).

    Article  PubMed  Google Scholar 

  48. B. A. Lapin and G. M. Cherkovich. Biological normals. In R. N. T.-W. Fiennes (ed.), Pathology of Simian Primates, Part I, S. Karger, Basel, 1972, pp. 78–156.

    Google Scholar 

  49. L. Bueno, J. Fioramonti, and Y. Ruckebusch. Gastric pH changes associated with duodenal motility in fasted dogs. J. Phys. 316:319–325 (1981).

    CAS  Google Scholar 

  50. E. Peters and A. Vickers. The characterization of preclinical research dogs using a combination of pH monitoring and gamma scintigraphy. Drug Deliv. Tech. 6:50–53 (2006).

    CAS  Google Scholar 

  51. J. H. Meyer, J. Dressman, A. Fink, and G. Amidon. Effect of size and density on canine gastric emptying of nondigestible solids. Gastroenterology 89:805–813 (1985).

    PubMed  CAS  Google Scholar 

  52. P.-O. Stotzer, M. Fjälling, J. Grétarsdóttir, and H. Abrahamsson. Assessment of gastric emptying: comparison of solid scintigraphic emptying and emptying of radiopaque markers in patients and healthy subjects. Dig. Dis. Sci. 44:729–734 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. M. Loreno, A. M. Bucceri, F. Catalano, A. Blasi, and A. Brogna. Gastric clearance of radiopaque markers in the evaluation of gastric emptying rate. Scand. J. Gastroenterol. 39:1215–1218 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. V. C. Ibekwe, M. K. Khela, D. F. Evans, G. E. Parsons and A. W. Basit. Gastrointestinal pH profiles in healthy male subjects measured using a novel radiotelemetry capsule, AAPS PharmSci. 7(S2):Abstract M1156 (2005). Available from: http://www.aapspharmsci.org/.

Download references

Acknowledgments

We would like to thank Wendy Morrison, Jennifer Gilbride and summer student, Howard Wu from the Department of Drug Metabolism and Pharmacokinetics and Robert Roache, Bob Lynch, Katrina Rivera, Earl Jenkins, Debra Paul and Laura Flanagan from the department of Laboratory Animal Sciences for providing technical assistance. Also, thanks to Simon Zhuang from Biomedical Data Sciences for providing statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile P. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, E.P., Mahar Doan, K.M., Portelli, S. et al. Gastric pH and Gastric Residence Time in Fasted and Fed Conscious Cynomolgus Monkeys Using the Bravo® pH System. Pharm Res 25, 123–134 (2008). https://doi.org/10.1007/s11095-007-9358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9358-5

Key words

Navigation