Skip to main content
Log in

Meta-analysis of Magnetic Marker Monitoring Data to Characterize the Movement of Single Unit Dosage Forms Though the Gastrointestinal Tract Under Fed and Fasting Conditions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a model predicting movement of non-disintegrating single unit dosage forms (or “tablet”) through the gastrointestinal tract and characterizing the effect of food intake, based on Magnetic Marker Monitoring data, allowing real-time location of a magnetically labeled formulation.

Methods

Five studies including 30 individuals in 94 occasions under 3 food status were considered. The mean residence time (MRT) of the tablet and the effect of food intake in proximal (PS) and distal stomach (DS), small intestine (SI), ascending (AC), transverse (TC) and descending colon (DC) were estimated using a Markov model for probabilities of movement.

Results

Under fasting conditions, tablet MRTs were 9.4 min in PS, 10.4 in DS, 246 in SI, 545 in AC, 135 in TC, and 286 in DC. A meal taken simultaneous to tablet intake prolonged tablet MRT to 99 min in PS and to 232 in DS; probability of gastric emptying increased of 89% each hour from 2.25 h after meal. The effect of a gastroileac reflex, caused by a secondary meal, accelerated the transit from terminal SI to AC.

Conclusion

This model-based knowledge can be used as a part of mechanism-based models for drug absorption, applied for bottom-up predictions and/or top-down estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Ascending colon

DC:

Descending colon

DS:

Distal stomach

GE:

Gastric emptying

GI:

Gastro-intestinal

HPMC:

Hydroxypropylmethylcellulose

MF:

Meal Function

MF_1:

Primary meal function

MMM:

Magnetic marker monitoring

MRT:

Mean residence time

MTT:

Mean transit time

OFV:

Objective function value

PS:

Proximal stomach

SC:

Sigmoid colon

SE:

Standard error

SI:

Small intestine

SITT:

Small intestine transit time

TC:

Transverse colon

TTGE:

Time to gastric emptying

References

  1. Weitschies W, Blume H, Monnikes H. Magnetic marker monitoring: high resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract. Eur J Pharm Biopharm. 2010;74:93–101.

    Article  CAS  PubMed  Google Scholar 

  2. Yuen KH. The transit of dosage forms through the small intestine. Int J Pharm. 2010;395:9–16.

    Article  CAS  PubMed  Google Scholar 

  3. Kenyon CJ, Hooper G, Tierney D, Butler J, Devane J, Wilding IR. The effect of food on the gastrointestinal transit and systemic absorption of naproxen from a novel sustained release formulation. J Control Release. 1995;34:31–6.

    Article  CAS  Google Scholar 

  4. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27:886–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Devereux JE, Newton JM, Short MB. The influence of density on the gastrointestinal transit of pellets. J Pharm Pharmacol. 1990;42:500–1.

    Article  CAS  PubMed  Google Scholar 

  6. Yuen KH, Deshmukh AA, Newton JM, Short M, Melchor R. Gastrointestinal transit and absorption of theophylline from a multiparticulate controlled release formulation. Int J Pharm. 1993;97:61–77.

    Article  CAS  Google Scholar 

  7. Billa N, Yuen KH, Khader MA, Omar A. Gamma-scintigraphic study of the gastrointestinal transit and in vivo dissolution of a controlled release diclofenac sodium formulation in xanthan gum matrices. Int J Pharm. 2000;201:109–20.

    Article  CAS  PubMed  Google Scholar 

  8. Fadda HM, McConnell EL, Short MD, Basit AW. Meal-induced acceleration of tablet transit through the human small intestine. Pharm Res. 2009;26:356–60.

    Article  CAS  PubMed  Google Scholar 

  9. Horton RE, Ross FG, Darling GH. Determination of the emptying-time of the stomach by use of enteric-coated barium granules. Br Med J. 1965;1:1537–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Daly PB, Davis SS, Frier M, Hardy JG, Kennerley JW, Wilson CG. Scintigraphic assessment of the in vivo dissolution rate of a sustained release tablet. Int J Pharm. 1982;10:17–24.

    Article  CAS  Google Scholar 

  11. Steinberg WH, Frey GH, Masci JN, Hutchins HH. Method for determining in vivo tablet disintegration. J Pharm Sci. 1965;54:747–52.

    Article  CAS  PubMed  Google Scholar 

  12. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29:1035–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Read NW, Cammack J, Edwards C, Holgate AM, Cann PA, Brown C. Is the transit time of a meal through the small intestine related to the rate at which it leaves the stomach? Gut. 1982;23:824–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sutton JA, Thompson S, Sobnack R. Measurement of gastric emptying rates by radioactive isotope scanning and epigastric impedance. Lancet. 1985;1:898–900.

    Article  CAS  PubMed  Google Scholar 

  16. Avill R, Mangnall YF, Bird NC, Brown BH, Barber DC, Seagar AD, et al. Applied potential tomography. A new noninvasive technique for measuring gastric emptying. Gastroenterology. 1987;92:1019–26.

    CAS  PubMed  Google Scholar 

  17. Maublant JC, Hassine H, Sournac M, Dapogny M, Veyre A, Aiache JM, et al. Ultrasonic visualization of tablets in the gastrointestinal tract. J Nucl Med. 1988;29:129.

    CAS  PubMed  Google Scholar 

  18. Casey DL, Beihn RM, Digenis GA, Shabhu MB. Method for monitoring hard gelatin capsule disintegration times in humans using external scintigraphy. J Pharm Sci. 1976;65:1412–3.

    Article  CAS  PubMed  Google Scholar 

  19. Alpsten M, Ekenved G, Solvell L. A profile scanning method of studying the release properties of different types of tablets in man. Acta Pharm Suec. 1976;13:107–22.

    CAS  PubMed  Google Scholar 

  20. Weitschies W, Wedemeyer J, Stehr R, Trahms L. Magnetic markers as a noninvasive tool to monitor gastrointestinal transit. IEEE Trans Biomed Eng. 1994;41:192–5.

    Article  CAS  PubMed  Google Scholar 

  21. Weitschies W, Kosch O, Monnikes H, Trahms L. Magnetic Marker Monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv Drug Deliv Rev. 2005;57:1210–22.

    Article  CAS  PubMed  Google Scholar 

  22. Goodman K, Hodges LA, Band J, Stevens HN, Weitschies W, Wilson CG. Assessing gastrointestinal motility and disintegration profiles of magnetic tablets by a novel magnetic imaging device and gamma scintigraphy. Eur J Pharm Biopharm. 2009;74:84–92.

    Article  PubMed  Google Scholar 

  23. Bergstrand M, Soderlind E, Weitschies W, Karlsson MO. Mechanistic modeling of a magnetic marker monitoring study linking gastrointestinal tablet transit, in vivo drug release, and pharmacokinetics. Clin Pharmacol Ther. 2009;86:77–83.

    Article  CAS  PubMed  Google Scholar 

  24. Rao C. Linear statistical inference and its applications. New York; 1973.

  25. Beal SL, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989–2009). Ellicott City: Icon Development Solutions; 2009.

    Google Scholar 

  26. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)--a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75:85–94.

    Article  PubMed  Google Scholar 

  27. D.C.T. R. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2010.

  28. Jonssonand EN, Karlsson MO. Xpose--an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58:51–64.

    Article  Google Scholar 

  29. Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28:171–92.

    Article  CAS  PubMed  Google Scholar 

  30. Bergstrand M, Soderlind E, Eriksson UG, Weitschies W, Karlsson MO. A semi-mechanistic modeling strategy to link in vitro and in vivo drug release for modified release formulations. Pharm Res. 2012;29:695–706.

    Article  CAS  PubMed  Google Scholar 

  31. Dinning PG, Bampton PA, Kennedy ML, Kajimoto T, Lubowski DZ, de Carle DJ, et al. Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Physiol. 1999;276:G331–40.

    CAS  PubMed  Google Scholar 

  32. Dinning PG, Szczesniak MM, Cook IJ. Determinants of postprandial flow across the human ileocaecal junction: a combined manometric and scintigraphic study. Neurogastroenterol Motil. 2008;20:1119–26.

    Article  CAS  PubMed  Google Scholar 

  33. Henin E, Bergstrand M, Standing JF, Karlsson MO. A mechanism-based approach for absorption modeling: the Gastro-Intestinal Transit Time (GITT) model. AAPS J. 2012;14:155–63.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Coupe AJ, Davis SS, Wilding IR. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res. 1991;8:360–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hardoff R, Sula M, Tamir A, Soil A, Front A, Badarna S, et al. Gastric emptying time and gastric motility in patients with Parkinson’s disease. Mov Disord. 2001;16:1041–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cammack J, Read NW, Cann PA, Greenwood B, Holgate AM. Effect of prolonged exercise on the passage of a solid meal through the stomach and small intestine. Gut. 1982;23:957–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dooley CP, Di Lorenzo C, Valenzuela JE. Variability of migrating motor complex in humans. Dig Dis Sci. 1992;37:723–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sarna SK. Cyclic motor activity; migrating motor complex: 1985. Gastroenterology. 1985;89:894–913.

    CAS  PubMed  Google Scholar 

  39. Weitschies W, Friedrich C, Wedemeyer RS, Schmidtmann M, Kosch O, Kinzig M, et al. Bioavailability of amoxicillin and clavulanic acid from extended release tablets depends on intragastric tablet deposition and gastric emptying. Eur J Pharm Biopharm. 2008;70:641–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bergstrand M, Soderlind E, Eriksson UG, Weitschies W, Karlsson MO. A semi-mechanistic modeling strategy for characterization of regional absorption properties and prospective prediction of plasma concentrations following administration of new modified release formulations. Pharm Res. 2012;29:574–84.

    Article  CAS  PubMed  Google Scholar 

  41. Staib AH, Loew D, Harder S, Graul EH, Pfab R. Measurement of theophylline absorption from different regions of the gastro-intestinal tract using a remote controlled drug delivery device. Eur J Clin Pharmacol. 1986;30:691–7.

    Article  CAS  PubMed  Google Scholar 

  42. Xitian P, Hongying L, Kang W, Yulin L, Xiaolin Z, Zhiyu W. A novel remote controlled capsule for site-specific drug delivery in human GI tract. Int J Pharm. 2009;382:160–4.

    Article  PubMed  Google Scholar 

  43. Stockis A, Sargentini-Maier ML, Otoul C, Connor A, Wilding I, Wray H. Assessment of levetiracetam bioavailability from targeted sites in the human intestine using remotely activated capsules and gamma scintigraphy: open-label, single-dose, randomized, four-way crossover study in healthy male volunteers. Clin Ther. 32:1813–21.

  44. Fuhr U, Staib AH, Harder S, Becker K, Liermann D, Schollnhammer G, et al. Absorption of ipsapirone along the human gastrointestinal tract. Br J Clin Pharmacol. 1994;38:83–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Harder S, Fuhr U, Beermann D, Staib AH. Ciprofloxacin absorption in different regions of the human gastrointestinal tract. Investigations with the hf-capsule. Br J Clin Pharmacol. 1990;30:35–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lee L, Hossain M, Wang Y, Sedek G. Absorption of rivastigmine from different regions of the gastrointestinal tract in humans. J Clin Pharmacol. 2004;44:599–604.

    Article  CAS  PubMed  Google Scholar 

  47. Chan KK, Buch A, Glazer RD, John VA, Barr WH. Site-differential gastrointestinal absorption of benazepril hydrochloride in healthy volunteers. Pharm Res. 1994;11:432–7.

    Article  CAS  PubMed  Google Scholar 

  48. Connor A. Location, location, location: gastrointestinal delivery site and its impact on absorption. Ther Deliv. 2012;3:575–8.

    Article  CAS  PubMed  Google Scholar 

  49. Lennernas H, Aarons L, Augustijns P, Beato S, Bolger M, Box K, et al. Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo. Eur J Pharm Sci. 2014;57:292–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work has received support from the Innovative Medicines Initiative Joint Undertaking (http://www.imi.europa.eu) under grant agreement number 115369, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies in kind contribution.

Dr Emilie Hénin was supported by a grant to Uppsala University from Novartis, and by the Lavoisier Program from the French Ministry of European Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Hénin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 46 kb)

ESM 2

(DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hénin, E., Bergstrand, M., Weitschies, W. et al. Meta-analysis of Magnetic Marker Monitoring Data to Characterize the Movement of Single Unit Dosage Forms Though the Gastrointestinal Tract Under Fed and Fasting Conditions. Pharm Res 33, 751–762 (2016). https://doi.org/10.1007/s11095-015-1824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1824-x

KEY WORDS

Navigation