Skip to main content

Advertisement

Log in

Characteristics of Portable Air Floating-Electrode Dielectric-Barrier-Discharge Plasmas Used for Biomedicine

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, a portable air floating-electrode dielectric-barrier-discharge (FE-DBD) plasma generator has been developed with a weight of less than 200 g and a volume of less than 480 cm3. Considering the equivalent impedance of human body (EIHB), an equivalent circuit model is developed that couples the FE-DBD generator and the EIHB module to determine the thickness of the dielectric barrier layers of the plasma generator, taking into account the electrical safety for human body during air discharges. The thermal and optical characteristics of the air discharges are also studied showing stable and thermal safety and abundant reactive oxygen and nitrogen species. Furthermore, with a view to biomedical applications of the air FE-DBD plasmas, a dosimetric experimental model using human embryonic kidney 293 (HEK293) cells is proposed to simulate the interactions between the air FE-DBD plasmas and the human body. In this model, the cell culture medium works as the floating electrode and is connected to the EIHB module. The LD50 value, which is the medium lethal dose based on the concept of drug dosage in pharmacy using the FE-DBD plasma source, is measured for a quantitative evaluation of the cytotoxicity after plasma treatment. This study provides a device physical safety and dosage evaluation method for the portable air FE-DBD plasma generator which is helpful for promoting the clinical applications of this type, and even other types of CAP sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this paper may be requested from the authors.

References

  1. Martines E, Brun P, Cavazzana R, Cordaro L, Zuin M, Martinello T, Gomiero C, Perazzi A, Melotti L, Maccatrozzo L, Patruno M, Iacopetti I (2020) Wound healing improvement in large animals using an indirect helium plasma treatment. Clin Plasma Med 17:100095

    Article  Google Scholar 

  2. Li G, Li D, Li J, Jia Y-N, Zhu C, Zhang Y, Li H-P (2021) Promotion of the wound healing of in vivo rabbit wound infected with methicillin-resistant Staphylococcus aureus treated by a cold atmospheric plasma jet. IEEE Trans Plasma Sci 49:2329–2339

    Article  CAS  Google Scholar 

  3. Li D, Li G, Li J, Liu Z-Q, Zhang X, Zhang Y, Li H-P (2019) Promotion of wound healing of genetic diabetic mice treated by a cold atmospheric plasma jet. IEEE Trans Plasma Sci 47:4848–4860

    Article  CAS  Google Scholar 

  4. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27:163–176

    Article  CAS  Google Scholar 

  5. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:425–442

    Article  CAS  Google Scholar 

  6. Kuo SP, Tarasenko O, Chang J, Popovic S, Chen CY, Fan HW, Scott A, Lahiani M, Alusta P, Drake JD, Nikolic M (2009) Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding. New J Phys 11:115016

    Article  Google Scholar 

  7. Xiong Z, Graves DB (2017) A novel cupping-assisted plasma treatment for skin disinfection. J Phys D: Appl Phys 50:05LT01

    Article  Google Scholar 

  8. Muto R, Hayashi N (2023) Sterilization characteristics of narrow tubing by nitrogen oxides generated in atmospheric pressure air plasma. Sci Rep 13:6947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weltmann K-D, von Woedtke Th (2011) Basic requirements for plasma sources in medicine. Eur Phys J Appl Phys 55:13807

    Article  Google Scholar 

  10. Kim Y-J, Jin S, Han G-H, Kwon GC, Choi JJ, Choi EH, Uhm HS, Cho G (2015) Plasma apparatuses for biomedical applications. IEEE Trans Plasma Sci 43:944–950

    Article  CAS  Google Scholar 

  11. Weltmann K-D, Fricke K, Stieber M, Brandenburg R, von Woedtke T, Schnabel U (2012) New nonthermal atmospheric-pressure plasma sources for decontamination of human extremities. IEEE Trans Plasma Sci 40:2963–2969

    Article  Google Scholar 

  12. Weltmann K-D, Polak M, Masur K, von Woedtke Th, Winter J, Reuter S (2012) Plasma processes and plasma sources in medicine. Contrib Plasma Phys 52:644–654

    Article  Google Scholar 

  13. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys Rep - Rev Sec Phys Lett 630:1–84

    CAS  Google Scholar 

  14. Petrova TzB, Petrov GM, Boris DR, Walton SG (2017) Non-equilibrium steady-state kinetics of He-air atmospheric pressure plasmas. Phys Plasmas 24:013501

    Article  Google Scholar 

  15. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  16. Ghasemi M, Olszewski P, Bradley JW, Walsh JL (2013) Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array. J Phys D: Appl Phys 46:052001

    Article  Google Scholar 

  17. Timmons C, Pai K, Jacob J, Zhang G, Ma LM (2018) Inactivation of Salmonella enterica, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes by a novel surface discharge cold plasma design. Food Control 84:455–462

    Article  CAS  Google Scholar 

  18. Liu Y, Wang S, Zhou R, Fang Z, Ostrikov K (2021) Development of a battery-operated floating-electrode dielectric barrier discharge plasma device and its characteristics. Plasma Sci Technol 23:064008

    Article  CAS  Google Scholar 

  19. Adil BH, Al-Shammari AM, Murbat HH (2020) Breast cancer treatment using cold atmospheric plasma generated by the FE-DBD scheme. Clin Plasma Med 19–20:100103

    Article  Google Scholar 

  20. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020

    Article  Google Scholar 

  21. von Woedtke Th, Metelmann H-R, Weltmann K-D (2014) Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Phys 54:104–117

    Article  Google Scholar 

  22. Walsh JL, Kong MG (2011) Portable nanosecond pulsed air plasma jet. Appl Phys Lett 99:081501

    Article  Google Scholar 

  23. Pei X, Lu X, Liu J, Liu D, Yang Y, Ostrikov K, Chu PK, Pan Y (2012) Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet. J Phys D: Appl Phys 45:165205

    Article  Google Scholar 

  24. Li Y-F, Taylor D, Zimmermann JL, Bunk W, Monetti R, Isbary G, Boxhammer V, Schmidt H-U, Shimizu T, Thomas HM, Morfill GE (2013) In vivo skin treatment using two portable plasma devices: comparison of a direct and an indirect cold atmospheric plasma treatment. Clin Plasma Med 1:35–39

    Article  Google Scholar 

  25. Kang SK, Kim HY, Yun GS, Lee JK (2015) Portable microwave air plasma device for wound healing. Plasma Sources Sci Technol 24:035020

    Article  Google Scholar 

  26. Dzimitrowicz A, Bielawska–Pohl A, Jamroz P, Dora J, Krawczenko A, Busco G, Grillon C, Kieda C, Klimczak A, Terefinko D, Baszczynska A, Pohl P (2020) Activation of the normal human skin cells by a portable dielectric barrier discharge–based reaction–discharge system of a defined gas temperature. Plasma Chem Plasma Process 40:79–97

    Article  CAS  Google Scholar 

  27. Chen G, Chen Z, Wang Z, Obenchain R, Wen D, Li H, Wirz RE, Gu Z (2021) Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Sci Adv 7:eabg5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee K-H, Kim S, Jo H, Son B-K, Shin M-S, Cho G (2019) Plasma skincare device based on floating electrode dielectric barrier discharge. Plasma Sci Technol 21:125403

    Article  CAS  Google Scholar 

  29. Taktak A, McCarthy J (2020) In: Taktak A (ed) Clinical Engineering, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  30. Stancampiano A, Chung T-H, Dozias S, Pouvesle J-M, Mir LM, Robert E (2020) Mimicking of human body electrical characteristic for easier translation of plasma biomedical studies to clinical applications. IEEE Trans Radiat Plasma Med Sci 4:335–342

    Article  Google Scholar 

  31. Kos S, Blagus T, Cemazar M, Filipic G, Sersa G, Cvelbar U (2017) Safety aspects of atmospheric pressure helium plasma jet operation on skin: in vivo study on mouse skin. PLoS ONE 12:e0174966

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mann MS, Tiede R, Gavenis K, Daeschlein G, Bussiahn R, Weltmann K-D, Emmert S, von Woedtke Th, Ahmed R (2016) Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin Plasma Med 4:35–45

    Article  Google Scholar 

  33. Alves LL, Becker MM, van Dijk J, Gans T, Go DB, Stapelmann K, Tennyson J, Turner MM, Kushner MJ (2023) Foundations of plasma standards. Plasma Sources Sci Technol 32:023001

    Article  Google Scholar 

  34. Li J, Zhao L-X, He T, Dong W-W, Yuan Y, Zhao X, Chen X-Y, Zhang N, Zou Z-F, Zhang Y, Li H-P (2021) A novel method for estimating the dosage of cold atmospheric plasmas in plasma medical applications. Appl Sci - Basel 11:11135

    Article  CAS  Google Scholar 

  35. Cheng H, Luo J-Y, Song K, Zhao F, Liu D, Nie L, Lu X (2022) On the dose of plasma medicine: plasma-activated medium (PAM) and its effect on cell viability. Phys Plasmas 29:063506

    Article  CAS  Google Scholar 

  36. Nupangtha W, Kuensaen C, Ngamjarurojana A, Chomdej S, Boonyawan D (2021) A surface dielectric barrier discharge non-thermal plasma to induce cell death in colorectal cancer cells. AIP Adv 11:075222

    Article  CAS  Google Scholar 

  37. Pourazadi S, Shagerdmootaab A, Chan H, Moallem M, Menon C (2017) On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater Struct 26:115007

    Article  Google Scholar 

  38. Zhao J, Wang X-S, Rao X-J, Zhang L-Y (2021) Design of a flyback high-efficiency switching power supply. J Phys: Conf Ser 1748:052042

    Google Scholar 

  39. Li J, Zhao L-X, Luo L-Y, Zhang Z-M, He T, Yuan Y, Zhang Y, Li H-P (2023) Dosage estimation of typical cold atmospheric plasma jets. J Nanchang Univ (Natural Science) 47:126–133 (In Chinese)

    Google Scholar 

  40. Marble AE, MacDonald AC, McVicar D, Roberts A (1977) A measurement of the electrostatic voltage, capacitance and energy storage characteristics of the human body (explosion hazard). Phys Med Biol 22:365–367

    Article  CAS  PubMed  Google Scholar 

  41. Dorgan SJ, Reilly RB (1999) A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans Rehabil Eng 7:341–348

    Article  CAS  PubMed  Google Scholar 

  42. Santis VD, Beeckman PA, Lampasi DA, Feliziani M (2011) Assessment of human body impedance for safety requirements against contact currents for frequencies up to 110 MHz. IEEE Trans Bio-med Eng 58:390–396

    Article  Google Scholar 

  43. Cheng S, Lou Z, Zhang L, Guo H, Wang Z, Guo C, Fukuda K, Ma S, Wang G, Someya T, Cheng H-M, Xu X (2023) Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv Mater 35:2206793

    Article  CAS  Google Scholar 

  44. Huang H, Han L, Fu X, Wang Y, Yang Z, Pan L, Xu M (2020) Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv Electron Mater 6:2000239

    Article  CAS  Google Scholar 

  45. Yang C, Suo Z (2018) Hydrogel ionotronics. Nat Rev Mater 3:125–142

    Article  CAS  Google Scholar 

  46. Kyrberg K, Guldner H, Rupp A, Schallmoser O (2007) Half-bridge and full-bridge choke converter concepts for the pulsed operation of large dielectric barrier discharge lamps. IEEE Trans Power Electron 22:926–933

    Article  Google Scholar 

  47. Gao G, Dong L, Peng K, Wei W, Li C, Wu G (2017) Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps. Phys Plasmas 24:013510

    Article  Google Scholar 

  48. Biganzoli I, Barni R, Riccardi C (2013) Temporal evolution of a surface dielectric barrier discharge for different groups of plasma microdischarges. J Phys D: Appl Phys 46:025201

    Article  Google Scholar 

  49. He J, Peng B, Jiang N, Shang K, Lu N, Li J, Wu Y (2022) Experimental and simulated investigation of microdischarge characteristics in a pin-to-pin dielectric barrier discharge (DBD) reactor. Plasma Sci Technol 24:105402

    Article  Google Scholar 

  50. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–294

    Article  CAS  PubMed  Google Scholar 

  51. Xu D, Liu D, Wang B, Chen C, Chen Z, Li D, Yang Y, Chen H, Kong MG (2015) In situ OH generation from O2 and H2O2 plays a critical role in plasma-induced cell death. PLoS ONE 10: e0128205

  52. Waskoenig J, Niemi K, Knake N, Graham LM, Reuter S, Gathen VSD, Gans T (2010) Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci Technol 19:045018

    Article  Google Scholar 

  53. Lin A, Truong B, Patel S, Kaushik N, Choi E, Fridman G, Fridman A, Miller V (2017) Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. Int J Mol Sci 18:966

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hirst AM, Simms MS, Mann VM, Maitland NJ, O’Connell D, Frame FM (2015) Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer 112:1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin A, Truong B, Pappas A, Kirifides L, Oubarri A, Chen S, Lin S, Dobrynin D, Fridman G, Fridman A, Sang N, Miller V (2015) Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. Plasma Process Polym 12:1392–1399

    Article  CAS  Google Scholar 

  56. Bekeschus S, Lin A, Fridman A, Wende K, Weltmann K-D, Miller V (2018) A comparison of floating-electrode DBD and kINPen jet: plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions. Plasma Chem Plasma Process 38:1–12

    Article  CAS  Google Scholar 

  57. Kieft IE, Darios D, Roks AJM, Stoffels E (2005) Plasma treatment of mammalian vascular cells: a quantitative description. IEEE Trans Plasma Sci 33:771–775

    Article  Google Scholar 

  58. Gidon D, Graves DB, Mesbah A (2017) Effective dose delivery in atmospheric pressure plasma jets for plasma medicine: a model predictive control approach. Plasma Sources Sci Technol 26:085005

    Article  Google Scholar 

  59. Cheng H, Xu J, Li X, Liu D, Lu X (2020) On the dose of plasma medicine: equivalent total oxidation potential (ETOP). Phys Plasmas 27:063514

    Article  CAS  Google Scholar 

  60. Braný D, Dvorská D, Halašová E, Škovierová H (2020) Cold atmospheric plasma: a powerful tool for modern medicine. Int J Mol Sci 21:2932

    Article  PubMed  PubMed Central  Google Scholar 

  61. von Woedtke Th, Laroussi M, Gherardi M (2022) Foundations of plasmas for medical applications. Plasma Sources Sci Technol 31:054002

    Article  Google Scholar 

  62. Pansare K, Vaid A, Singh SR, Rane R, Visani A, Ranjan M, Krishna CM, Sarin R, Joseph A (2022) Effect of cold atmospheric plasma jet and gamma radiation treatments on gingivobuccal squamous cell carcinoma and breast adenocarcinoma cells. Plasma Chem Plasma Process 42:163–178

    Article  CAS  Google Scholar 

  63. He Z, Charleton C, Devine RW, Kelada M, Walsh JMD, Conway GE, Gunes S, Mondala JRM, Tian F, Tiwari B, Kinsella GK, Malone R, O’Shea D, Devereux M, Wang W, Cullen PJ, Stephens JC, Curtin JF (2021) Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-generating cold atmospheric plasma. Eur J Med Chem 224:113736

    Article  CAS  PubMed  Google Scholar 

  64. Kaushik N, Uddin N, Sim GB, Hong YJ, Baik KY, Kim CH, Lee SJ, Kaushik NK, Choi EH (2015) Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems. Sci Rep 5:8587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Nos. 12205163, 11475103, 10972119), Tsinghua Precision Medicine Foundation (Nos. 10001020119, 2022TS015), Tsinghua University Initiative Scientific Research Program (Nos. 20229990132, 20182000306).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.-X.Z., Y.Z. and H.-P.L.; methodology, C.H., Y.Z., H.-P.L., and L.-X.Z.; software, H.-X.Z., L.-X.Z. and H.C.; validation, H.-X.Z., L.-X.Z. and H.C.; formal analysis, H.-X.Z., and L.-X.Z.; investigation, H.-X.Z., L.-X.Z. and H.C.; resources, H.-X.Z., L.-X.Z. and H.C.; data curation, H.-X.Z., L.-X.Z. and H.C.; writing—original draft preparation, H.-X.Z. and L.-X.Z.; writing—review and editing, C.H., Y.Z. and H.-P.L.; visualization, H.-X.Z. and H.C.; supervision, Y.Z. and H.-P.L.; funding acquisition, Y.Z. and H.-P.L. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yu Zhang or He-Ping Li.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors have declared no competing interests for this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L.-X. Zhao and H.-X. Zhao contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, LX., Zhao, HX., Chen, H. et al. Characteristics of Portable Air Floating-Electrode Dielectric-Barrier-Discharge Plasmas Used for Biomedicine. Plasma Chem Plasma Process 43, 1567–1585 (2023). https://doi.org/10.1007/s11090-023-10384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10384-1

Keywords

Navigation