Skip to main content
Log in

Effect of Silicon and Graphite Degeneration on High-Temperature Oxidation of Ductile Cast Irons in Open Air

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The use of high silicon ductile irons is increasing as they offer some advantages with respect to conventional pearlitic–ferritic grades such as high elongation at rupture for a given tensile strength value and a fully ferritic matrix. Besides addressing mechanical requirements, some castings must fulfil corrosion and high-temperature oxidation requisites. Two different ductile cast irons with silicon contents of 2.04 and 5.21 wt% were used so as to comparatively study their mechanical properties and high-temperature oxidation responses. The structure of both alloys contains nodular graphite and a fully ferritic matrix. Some samples of the alloy with 5.21 wt% silicon also contain abundant degenerated graphite which was identified as Chunky graphite. Oxidation resistance of both materials was evaluated by exposures to air at 650 °C for 720 h using a tubular furnace. The alloy with 5.21 wt% silicon showed an oxidation resistance about three times higher than the low silicon alloy. Although both alloys showed similar oxidation mechanisms, the oxidation scale formed on the high-silicon alloy stands out for having lower thickness, higher silicon content in the metal/oxide interface and more compact and adherent layers. Samples with Chunky graphite showed a similar evolution to those with graphite nodules, so no negative effect from this graphite degeneration on oxidation process was observed. The analyses performed by XRD revealed the presence of fayalite in the 5.21 wt% Si alloy, which is responsible for the better oxidation resistance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Toktas, A. Toktas and M. Tayanc, Materials and Design 29, 1600–1608 (2008). https://doi.org/10.1016/j.matdes.2007.10.001.

    Article  Google Scholar 

  2. N. S. Tiedje, Materials Science and Technology 26, 505–514 (2010). https://doi.org/10.1179/026708310X12668415533649.

    Article  Google Scholar 

  3. R. Kallbörn, K. Hamberg, M. Wessén and L. E. Björkegren, Materials Science and Engineering A 413–414, 346–351 (2005). https://doi.org/10.1016/j.msea.2005.08.210.

    Article  Google Scholar 

  4. M. Shirani and G. Härkegård, Engineering Failure Analysis 18, 12–24 (2011). https://doi.org/10.1016/j.engfailanal.2010.07.001.

    Article  Google Scholar 

  5. C. Labrecque and M. Gagné, Canadian Metallurgical Quarterly 37, 343–378 (1998). https://doi.org/10.1179/cmq.1998.37.5.343.

    Google Scholar 

  6. A. Suárez-Sanabria and J. Fernández-Carrasquilla, Revista de Metalurgia 42, 18–31 (2006).

    Article  Google Scholar 

  7. M. Sancy, Y. Gourbeyre, E. M. M. Sutter and T. Tribollet, Corrosion Science 52, 1222–1227 (2010). https://doi.org/10.1016/j.corsci.2009.12.026.

    Article  Google Scholar 

  8. M. A. Arenas, A. Niklas, A. Conde, S. Méndez, J. Sertucha, J. de Damborenea, Revista de Metalurgia 50 (2014). http://dx.doi.org/10.3989/revmetalm.032.

  9. A. Ebel, S. Y. Brou, B. Malard, J. Lacaze, D. Monceau and L. Vaissière, Materials Science Forum 925, 353–360 (2018). https://doi.org/10.4028/www.scientific.net/MSF.925.353.

    Article  Google Scholar 

  10. K.-A. Jafar and A.-A. Behnam, Journal of Iron and Steel Research, International 18, 34–39 (2011). https://doi.org/10.1016/S1006-706X(11)60034-4.

    Google Scholar 

  11. R. González-Martínez, U. de la Torre, J. Lacaze and J. Sertucha, Materials Science and Engineering A 712, 794–802 (2018). https://doi.org/10.1016/j.msea.2017.11.050.

    Article  Google Scholar 

  12. U. de la Torre, A. Loizaga, J. Lacaze and J. Sertucha, Materials Science and Technology 30, 1425–1431 (2014). https://doi.org/10.1179/1743284713Y.0000000483.

    Article  Google Scholar 

  13. J. Lacaze, L. Magnusson-Åberg, J. Sertucha J, Review of microstructural features of chunky graphite in ductile cast irons. Proceedings of the Keith Millis symposium, Nashville, American Foundry Society (2013), pp. 360–368.

  14. U. de la Torre, J. Lacaze and J. Sertucha, International Journal of Materials Research 107, 1041–1050 (2017). https://doi.org/10.3139/146.111434.

    Article  Google Scholar 

  15. P. A. Schweitzer, Fundamentals of metallic corrosion: atmospheric and media corrosion of metals. Chapter 4, Corrosion of Cast Iron and Cast Steel (CRC Press, 2006).

  16. Z. Glavas, A. Strkalj and A. Stojakovich, Metalurgija 55, 293–296 (2016).

    Google Scholar 

  17. W. Stets, H. Löblich, G. Gassner and P. Schumacher, International Journal of Metalcasting 8, 35–40 (2014). https://doi.org/10.1007/BF03355580.

    Article  Google Scholar 

  18. R. González-Martínez, U. de la Torre, A. Ebel, J. Lacaze and J. Sertucha, Materials Science and Engineering A 712, 803–811 (2018). https://doi.org/10.1016/j.msea.2017.11.051.

    Article  Google Scholar 

  19. A. Reynaud, Elsevier 3, 2010 (1737–1788).

    Google Scholar 

  20. A. K. Gupta, D. Boruah, N. Suresh, N. Kamal, A. K. Singh, International Journal of Engineering Research and Applications 6, 68–73 (2016) ISSN: 2248-9622.

  21. P. M. Dardati, D. J. Celentano, L. A. Godoy, A. A. Chiarella and B. J. Schulz, International Journal of Cast Metals Research 22, 390–400 (2009). https://doi.org/10.1179/174313309X436646.

    Article  Google Scholar 

  22. R. Källbom, K. Hamberg, L.-E. Björkegren, Chunky graphite in ductile iron castings. Proceedings of 67th World Foundry Congress, Harrogate, UK. 2006.

  23. X. G. Diao, Z. L. Ning, F. Y. Cao, S. Z. Ren and J. F. Sun, Materials Science and Technology 27, 834–838 (2011). https://doi.org/10.1179/026708309X12560332736557.

    Article  Google Scholar 

  24. A. Mourujärvi, K. Widell, T. Saukkonen and H. Hänninen, Fatigue and Fracture of Engineering Materials and Structures 32, 379–390 (2009). https://doi.org/10.1111/j.1460-2695.2009.01337.x.

    Article  Google Scholar 

  25. P. Ferro, P. Lazzrin and F. Berto, Materials Science and Engineering A 554, 122–128 (2012). https://doi.org/10.1016/j.msea.2012.06.024.

    Article  Google Scholar 

  26. J. Kaczorowski and K. Jozwiak, Journal of Failure Analysis and Prevention 13, 446–450 (2013). https://doi.org/10.1007/s11668-013-9693-2.

    Article  Google Scholar 

  27. I. Svedung and N. G. Vannerberg, Corrosion Science 14, 391–399 (1974).

    Article  Google Scholar 

  28. M. Ekström, P. Szakalos and S. Jonsson, Oxidation of Metals 80, 455–466 (2013). https://doi.org/10.1007/s11085-013-9389-8.

    Article  Google Scholar 

  29. M. M. P. Brady, G. Muralidharan, D. N. Leonard, J. A. Haynes, R. G. Weldon and R. D. England, Oxidation of Metals 82, 359–381 (2014). https://doi.org/10.1007/s11085-014-9496-1.

    Article  Google Scholar 

  30. M.-B. Lin, C.-J. Wang and A. A. Volinsky, Oxidation of Metals 76, 161–168 (2011). https://doi.org/10.1007/s11085-011-9244-8.

    Article  Google Scholar 

  31. F. Tholence and M. Norell, Oxidation of Metals 69, 13–36 (2008).

    Article  Google Scholar 

  32. Z. Ban, K. Bohnenkamp and H.-J. Engell, Corrosion Science 19, 283–293 (1979).

    Article  Google Scholar 

  33. C. R. Cvetnic, C. Ravindran and A. McLean, Canadian Metallurgical Quarterly 46, 75–88 (2007).

    Article  Google Scholar 

  34. A. Atkinson, Corrosion Science 22, 87–102 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José de Damborenea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, S., Arenas, M.Á., Niklas, A. et al. Effect of Silicon and Graphite Degeneration on High-Temperature Oxidation of Ductile Cast Irons in Open Air. Oxid Met 91, 225–242 (2019). https://doi.org/10.1007/s11085-018-9875-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9875-0

Keywords

Navigation