Skip to main content
Log in

Ultra-broadband, polarization-independent, and wide-angle metamaterial absorber based on fabrication-friendly Ti and TiO2 resonators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work presents an ultra-broadband metamaterial absorber in the wavelength range of 250–4000 nm. The absorber consists of a Ti disk resonator and a stack of TiO2/Ti square-shaped resonators, supported by TiO2/Ti thin layers. This arrangement of the layers offers a metal–insulator-metal configuration, enhancing the absorptivity of the structure. The effects of geometrical parameters, including the thickness of the resonators, the radius of the disk resonators, and the width of the square resonator, on the absorption spectrum of the absorber are investigated. To attain the highest average absorption, the particle swarm optimization (PSO) algorithm is employed. The simulation results obtained by the finite-difference time-domain method indicate that the average absorption can reach a high value of 96.25% over the studied wavelength range. The over 90% absorption bandwidth is 3509 nm. Additionally, the solar absorption of the absorber is 94.89%. The absorption is more than 80% even for incident angles up to 50° for both TM and TE polarizations. The proposed absorber is a very promising option for solar energy harvesting, photo-thermal technology, photo-detection, and thermal-photovoltaics applications due to its high over 90% bandwidth, independence on the polarization and angle of incident light, and ease of fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  • Afshari-Bavil, M., Dong, M., Li, C., Feng, S., Zhu, L.: Thermally controllable perfect absorber at telecommunication spectrum based on phase change material and cavity grating. Laser Phys. 30, 026201 (2019)

    Article  ADS  Google Scholar 

  • Afshari-Bavil, M., Mahmoudi, A., Li, C., Feng, S., Dong, M., Zhu, L.: Thermally controllable infrared absorption in cylindrical groove array covered by phase change material. Plasmonics 15, 2119–2125 (2020)

    Article  CAS  Google Scholar 

  • Agarwal, S., Prajapati, Y.K.: Analysis of metamaterial-based absorber for thermo-photovoltaic cell applications. IET Optoelectron. 11, 208–212 (2017)

    Article  Google Scholar 

  • Agarwal, S., Prajapati, Y.: Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application. Optics Commun. 413, 39–43 (2018)

    Article  CAS  ADS  Google Scholar 

  • Bagmanci, M., Karaaslan, M., Unal, E., Akgol, O., Bakır, M., Sabah, C.: Solar energy harvesting with ultra-broadband metamaterial absorber. Int. J. Mod. Phys. B 33, 1950056 (2019)

    Article  ADS  Google Scholar 

  • Barzegar-Parizi, S., Vafapour, Z.: Dynamically switchable Sub-THz absorber using VO2 metamaterial suitable in optoelectronic applications. IEEE Trans. Plasma Sci. 50, 5038–5045 (2022)

    Article  CAS  ADS  Google Scholar 

  • Cai, H., Sun, Y., Wang, X., Zhan, S.: Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm. Opt. Express 28, 15347–15359 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen, Y.B., Chen, C.-J.: Interaction between the magnetic polariton and surface plasmon polariton. In ASME International Mechanical Engineering Congress and Exposition, p. V08CT09A011 (2013)

  • Cheng, Y., Li, Z., Cheng, Z.: Terahertz perfect absorber based on InSb metasurface for both temperature and refractive index sensing. Opt. Mater. 117, 111129 (2021a)

    Article  CAS  Google Scholar 

  • Cheng, Y., Liu, J., Chen, F., Luo, H., Li, X.: Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 402, 127345 (2021b)

    Article  CAS  Google Scholar 

  • Cheng, Y., Chen, F., Luo, H.: Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res. Lett. 16, 1–9 (2021c)

    Article  ADS  Google Scholar 

  • Cheng, Y., Qian, Y., Luo, H., Chen, F., Cheng, Z.: Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E 146, 115527 (2023)

    Article  CAS  Google Scholar 

  • Ehsanikachosang, M., Karimi, K., Rezaei, M.H., Pourmajd, H.: Metamaterial solar absorber based on titanium resonators for operation in the ultraviolet to near-infrared region. JOSA B 39, 3178–3186 (2022)

    Article  CAS  ADS  Google Scholar 

  • Gao, H., Peng, W., Chu, S., Cui, W., Liu, Z., Yu, L., et al.: Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 8, 1038 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, H., Peng, W., Cui, W., Chu, S., Yu, L., Yang, X.: Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt. Mater. 97, 109377 (2019)

    Article  CAS  Google Scholar 

  • Ghobadi, A., Hajian, H., Gokbayrak, M., Butun, B., Ozbay, E.: Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber. Nanophotonics 8, 823–832 (2019)

    Article  CAS  Google Scholar 

  • Gong, C., Zhan, M., Yang, J., Wang, Z., Liu, H., Zhao, Y., et al.: Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Sci. Rep. 6, 1–8 (2016)

    Article  Google Scholar 

  • Hasan, D., Lee, C.: Hybrid metamaterial absorber platform for sensing of CO2 gas at Mid-IR. Adv. Sci. 5, 1700581 (2018)

    Article  Google Scholar 

  • Huang, Z., Wang, B.: Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared. Surf. Interf. 33, 102244 (2022)

    Article  CAS  Google Scholar 

  • Kong, X., Jiang, S., Kong, L., Wang, Q., Hu, H., Zhang, X., et al.: Transparent metamaterial absorber with broadband radar cross-section (RCS) reduction for solar arrays. IET Microw. Antennas Propag. 14, 1580–1586 (2020)

    Article  Google Scholar 

  • Korkmaz, S., Turkmen, M., Aksu, S.: Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy. Sens. Actuators, A 301, 111757 (2020)

    Article  CAS  Google Scholar 

  • Li, Y., Liu, Z., Zhang, H., Tang, P., Wu, B., Liu, G.: Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 27, 11809–11818 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li, J., Li, J., Zhou, H., Zhang, G., Liu, H., Wang, S., et al.: Plasmonic metamaterial absorbers with strong coupling effects for small pixel infrared detectors. Opt. Express 29, 22907–22921 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Li, Z., Cheng, Y., Luo, H., Chen, F., Li, X.: Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J. Alloy. Compd. 925, 166617 (2022a)

    Article  CAS  Google Scholar 

  • Li, M., Wang, G., Gao, Y., Gao, Y.: An infrared ultra-broadband absorber based on MIM structure. Nanomaterials 12, 3477 (2022b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Y.-L., Zhao, Y.: Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications. Sci. Rep. 10, 1480 (2020a)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liao, Y.-L., Zhao, Y.: Ultra-narrowband dielectric metamaterial absorber for sensing based on cavity-coupled phase resonance. Results Phys. 17, 103072 (2020b)

    Article  Google Scholar 

  • Lide, D.R.: CRC handbook of chemistry and physics, vol. 85. CRC Press, Cambridge (2004)

    Google Scholar 

  • Lin, Y.-S., Xu, Z.: Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatr. 14, 78–93 (2020)

    Article  Google Scholar 

  • Liu, Z., Liu, G., Liu, X., Wang, Y., Fu, G.: Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater. 83, 118–123 (2018a)

    Article  CAS  ADS  Google Scholar 

  • Liu, Z., Liu, G., Huang, Z., Liu, X., Fu, G.: Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells 179, 346–352 (2018b)

    Article  CAS  Google Scholar 

  • Liu, Y.-N., Weng, X.-L., Zhang, P., Li, W.-X., Gong, Y., Zhang, L., et al.: Ultra-broadband infrared metamaterial absorber for passive radiative cooling. Chin. Phys. Lett. 38, 034201 (2021)

    Article  CAS  ADS  Google Scholar 

  • Mehrabi, S., Rezaei, M.H., Rastegari, M.R.: High-efficient plasmonic solar absorber and thermal emitter from ultraviolet to near-infrared region. Opt. Laser Technol. 143, 107323 (2021)

    Article  CAS  Google Scholar 

  • Mokhtari, A., Rezaei, M.H., Zarifkar, A.: Ultra-broadband absorber based on metamaterial resonators utilizing particle swarm optimization algorithm. Photonics Nanostr-Fund Appl 53, 101105 (2023)

    Article  Google Scholar 

  • Navarro, R., Liard, L., Sokoloff, J.: Effects of a low pressure plasma on a negative-permeability metamaterial. J. Appl. Phys. 126, 163304 (2019)

    Article  ADS  Google Scholar 

  • Patel, S.K., Surve, J., Prajapati, P., Taya, S.A.: Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Opt. Mater. 131, 112683 (2022)

    Article  CAS  Google Scholar 

  • Pierson, H.O.: Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. William Andrew (1996)

  • Qin, F., Chen, X., Yi, Z., Yao, W., Yang, H., Tang, Y., et al.: Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 211, 110535 (2020)

    Article  CAS  Google Scholar 

  • Qiu, Y., Zhang, P., Li, Q., Zhang, Y., Li, W.: A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 230, 1165–1174 (2021)

    Article  CAS  ADS  Google Scholar 

  • Rezaei, M.H., Zarifkar, A., Miri, M.: Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Mater. 84, 572–578 (2018)

    Article  CAS  ADS  Google Scholar 

  • Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52, 397–407 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • Sayed, S.I., Mahmoud, K.R., Mubarak, R.I.: Design and optimization of broadband metamaterial absorber based on manganese for visible applications. Sci. Rep. 13, 11937 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Shater, A., Zarifi, D.: Radar cross section reduction of microstrip antenna using dual-band metamaterial absorber. In: The applied computational electromagnetics society journal (ACES), pp. 135–140, (2017).

  • Siefke, T., Kroker, S., Pfeiffer, K., Puffky, O., Dietrich, K., Franta, D., et al.: Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Advanced Optical Materials 4, 1780–1786 (2016)

    Article  CAS  Google Scholar 

  • Tan, J., Wu, Z., Xu, K., Meng, Y., Jin, G., Wang, L., et al.: Numerical study of an Au-ZnO-Al perfect absorber for a color filter with a high quality factor. Plasmonics 15, 293–299 (2020)

    Article  CAS  Google Scholar 

  • Timsit, R.S.: High speed electronic connectors: a review of electrical contact properties. IEICE Trans. Electron. 88, 1532–1545 (2005)

    Article  ADS  Google Scholar 

  • Tuan, T.S., Hoa, N.T.Q.: Numerical study of an efficient broadband metamaterial absorber in visible light region. IEEE Photonics J. 11, 1–10 (2019)

    Article  Google Scholar 

  • Wagner, L., Wollmann, M.: Titanium and titanium alloys. In: Structural materials and processes in transportation, pp. 151–180 (2013)

  • Wang, B.-X., Wang, G.-Z., Wang, L.-L.: Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523–530 (2016)

    Article  CAS  Google Scholar 

  • Wu, D., Liu, C., Liu, Y., Xu, Z., Yu, Z., Yu, L., et al.: Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv. 8, 21054–21064 (2018)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wu, J., Sun, Y., Wu, B., Sun, C., Wu, X.: Perfect metamaterial absorber for solar energy utilization. Int. J. Therm. Sci. 179, 107638 (2022)

    Article  CAS  Google Scholar 

  • www.lumerical.com. Lumerical FDTD Solution.

  • Xiao, L.S.: Chapter 6 - Refractory metals. In: Jiang, L.Y., Li, N. (eds.) Membrane-based separations in metallurgy, pp. 173–204. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  • Xie, P., Shi, Z., Feng, M., Sun, K., Liu, Y., Yan, K., et al.: Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv. Comp. Hybrid Mater. 5, 679–695 (2022)

    Article  Google Scholar 

  • Yu, H., Zhao, Z., Qian, Q., Xu, J., Gou, P., Zou, Y., et al.: Metamaterial perfect absorbers with solid and inverse periodic cross structures for optoelectronic applications. Opt. Express 25, 8288–8295 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhang, H., Cheng, Y., Chen, F.: Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 229, 166300 (2021)

    Article  CAS  ADS  Google Scholar 

  • Zhou, J., Liu, X., Zhang, H., Liu, M., Yi, Q., Liu, Z., et al.: Cross-shaped titanium resonators based metasurface for ultra-broadband solar absorption. IEEE Photonics J. 13, 1–8 (2021)

    Google Scholar 

Download references

Funding

This research was funded by the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI, 2023VTB0004).

Author information

Authors and Affiliations

Authors

Contributions

MHR Software, Data curation, Methodology, Investigation, Writing. YV Software, Methodology, Writing. MAB Software, Investigation, Writing-review, and editing. DL Investigation, Writing-review, and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mehdi Afshari-Bavil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M.H., Vatandoust, Y., Afshari-Bavil, M. et al. Ultra-broadband, polarization-independent, and wide-angle metamaterial absorber based on fabrication-friendly Ti and TiO2 resonators. Opt Quant Electron 56, 400 (2024). https://doi.org/10.1007/s11082-023-06158-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06158-w

Keywords

Navigation