Skip to main content

Advertisement

Log in

Comparison of supercontinuum spectrum generating by hollow core PCFs filled with nitrobenzene with different lattice types

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Three types of hollow-core photonic crystal fibers (HC-PCFs) of optimized design with respect to both chromatic dispersion and loss were used to investigate supercontinuum generation (SCG). The optical properties of HC-PCFs filled with nitrobenzene (C6H5NO2) with the circular lattice (CL), square lattice (SL), and hexagonal lattice (HL) are analyzed to choose the optimal fiber. As a result, the three optimized structures: #CF1 (lattice constant (Λ) of 1.0 μm, filling factor (f1) of 0.65, and core diameter (Dc) of 1.285 µm), #SF2 (Λ = 1.0 μm, f1 = 0.7, and Dc = 1.23 µm), #HF3 (Λ = 1.0 μm, f1 = 0.45, and Dc = 1.505 µm) with flat and close to zero chromatic dispersion curve in the investigated wavelength region, have the values of chromatic dispersion − 10 ps.nm−1.km−1 at 1.15 μm, − 7.7 ps.nm−1.km−1 at 1.23 μm, and − 3.0 ps nm−1 km−1 at the 1.55 μm pump wavelength, respectively are intended for SCG in an all-normal dispersion regime. We demonstrate the possibility of coherent octave-wide SCG in the wavelength range of 0.72 ÷ 1.7 μm, 0.74 ÷ 1.77 μm, and 0.83 ÷ 2.36 μm with 90 fs pulses and 10 pJ of low energy in-coupled into the considered fibers core. The obtained results show that SCG with HL-PCFs has the highest efficiency, although all fibers are examined with the same input energy. Especially, the supercontinuum (SC) spectral bandwidth is independent of the type of lattice at the pump energy of 1.57 pJ, and this can be seen as a limitation between the pure self-phase modulation and other nonlinear processes contributing to SCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal, G.: Nonlinear Fiber Optics. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  • Alfano, R.R.: The ultimate white light. Sci. Am. 295, 86–93 (2006)

    Article  Google Scholar 

  • Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Buczyński, R.: Photonic crystal fibers. Acta Phys. Pol. A 106, 141–168 (2004)

    Article  ADS  Google Scholar 

  • Churin, D., Nguyen, T.N., Kieu, K., Norwood, R.A., Peyghambarian, N.: Mid-IR supercontinuum generation in an integrated liquid core optical fiber filled with CS2. Opt. Mater. Express 3, 1358–1364 (2013)

    Article  ADS  Google Scholar 

  • Corwin, K.L., Newbury, N.R., Dudley, J.M., Coen, S., Diddams, S.A., Weber, K., Windeler, R.S.: Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber. Phys. Rev. Lett. 90, 113904 (2003)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation is photonic crystal fiber. J. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  • Dudley, J.M., Taylor, J.R.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Fanjoux, G., Margueron, S., Beugnot, J.C., Sylvestre, T.: Supercontinuum generation by stimulated Raman-Kerr scattering in a liquid core optical fiber. J. Opt. Soc. Am. B 34, 1677–1683 (2017)

    Article  ADS  Google Scholar 

  • Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008)

    Article  ADS  Google Scholar 

  • Genier, E., Bowen, P., Sylvestre, T., Dudley, J.M., Moselund, P., Bang, O.: Amplitude noise all-normal dispersion coherence degradation of femtosecond supercontinuum generation in all normal-dispersion fibers. J. Opt. Soc. Am. B 36, A161–A167 (2019)

    Article  ADS  Google Scholar 

  • Heidt, A.M., Feehan, J.S., Price, J.H.V., Feurer, T.: Limits of coherent supercontinuum generation in normal dispersion fibers. J. Opt. Soc. Am. B 34, 764–775 (2017)

    Article  ADS  Google Scholar 

  • Ho, D.Q., Pniewski, J., Le, V.H., Ramaniuk, A., Cao, L.V., Borzycki, K., Khoa, D.X., Klimczak, M., Buczyński, R.: Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses. Appl. Opt. 57, 3738–3746 (2018)

    Article  ADS  Google Scholar 

  • Hoang, V.T., Kasztelanic, R., Anuszkiewicz, A., Stepniewski, G., Filipkowski, A., Ertman, S., Pysz, D., Wolinski, T., Xuan, K.D., Klimczak, M., Buczynski, R.: All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene. Opt. Mater. Express 8, 3568–3582 (2018)

    Article  ADS  Google Scholar 

  • Hoang, V.T., Kasztelanic, R., Filipkowski, A., Stępniewski, G., Pysz, D., Klimczak, M., Ertman, S., Cao, L.V., Woliński, T.R., Trippenbach, M., Khoa, D.X., Śmietana, M., Buczyński, R.: Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride. Opt. Mater. Express 9, 2264–2278 (2019)

    Article  ADS  Google Scholar 

  • Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mat. Express 2, 1588–1611 (2012)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Lanh, C.V., Anuszkiewicz, A., Ramaniuk, A., Kasztelanic, R., Khoa, D.X., Trippenbach, M., Buczyński, R.: Supercontinuum generation in photonic crystal fibres with core filled with toluene. J. Opt. 19, 125604 (2017)

    Article  ADS  Google Scholar 

  • Lanh, C.V., Thuy, H.V., Van, C.L., Borzycki, K., Khoa, D.X., Vu, T.Q., Trippenbach, M., Buczyński, R., Pniewski, J.: Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Phys. 29, 075107 (2019)

    Article  ADS  Google Scholar 

  • Lanh, C.V., Thuy, H.V., Van, C.L., Borzycki, K., Khoa, D.X., Vu, T.Q., Trippenbach, M., Buczyński, R., Pniewski, J.: Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Phys. 30, 035105 (2020)

    Article  ADS  Google Scholar 

  • Monfared, Y.E., Javan, A.R.M., Kashani, A.R.M.: Confinement loss in hexagonal lattice photonic crystal fibers. Optik 124, 7049–7052 (2013)

    Article  ADS  Google Scholar 

  • Pandey, S.K., Prajapati, Y.K., Maurya, J.B.: Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results Opt. 1, 100024 (2020)

    Article  Google Scholar 

  • Petersen, C.R., Moselund, P.M., Huot, L., Hooper, L., Bang, O.: Towards a table-top synchrotron based on supercontinuum generation. Infrared Phys. Technol 91, 182–186 (2018)

    Article  ADS  Google Scholar 

  • Pysz, D., Kujawa, I., Stepien, R., Klimczak, M., Filipkowski, A., Franczyk, M., Kociszewski, L., Buzniak, J., Harasny, K., Buczynski, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Bull. Pol. Acad. Sci. Tech. Sci 62, 667–682 (2014)

    Google Scholar 

  • Qian, K., Gu, Z., Xu, J., Dong, X., Yu, W., Yu, Z., Ren, D.: Noise-like pulse erbium-doped fiber laser for supercontinuum generation. Optik 158, 215–219 (2018)

    Article  ADS  Google Scholar 

  • Rostami, A., Soofi, H.: Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers. J. Lightwave Technol. 29, 234–241 (2011)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11, 843–852 (2003)

    Article  ADS  Google Scholar 

  • Sen, S., Shafi, M.A.A., Kabir, M.A.: Hexagonal photonic crystal Fiber (H-PCF) based optical sensor with high relative sensitivity all-normal dispersion low confinement loss for terahertz (THz) regime. Sens. Bio-Sens. Res. 30, 100377 (2020)

    Article  Google Scholar 

  • Sutherland, R.L., McLean, D.G., Kirkpatrick, S.: Handbook of Nonlinear Optics. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  • Tan, C.Z.: Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. J. Non-Cryst. Solids 223, 158–163 (1998)

    Article  ADS  Google Scholar 

  • Tran, L.T.B., Thuy, N.T., Ngoc, V.T.M., Trung, L.C., Minh, L.V., Van, C.L., Khoa, D.X., Lanh, C.V.: Analysis of dispersion characteristics of solid-core PCFs with different types of lattices in the claddings, infiltrated with ethanol. Photon. Lett. Poland 12, 106–108 (2020)

    Article  Google Scholar 

  • Tu, H., Boppart, S.A.: Coherent fiber supercontinuum for biophotonics. Laser Photon. Rev. 7, 628–645 (2013)

    Article  ADS  Google Scholar 

  • Vieweg, M., Gissibl, T., Pricking, S., Kuhlmey, B.T., Wu, D.C., Eggleton, B.J., Giessen, H.: Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt. Express 18, 25232–25240 (2010)

    Article  ADS  Google Scholar 

  • Wang, Y., Li, S., Wu, J., Yu, P., Li, Z.: Design of an ultrabroadband and compact filter based on square-lattice photonic crystal fiber with two large gold-coated air holes. Photon. Nanostruct. Fundament. Appl. 41, 100816 (2020)

    Article  Google Scholar 

  • Woodward, J.T., Smith, A.W., Jenkins, C.A., Lin, C., Brown, S.W., Lykke, K.R.: Supercontinuum sources for metrology. Metrologia 46, S277–S282 (2009)

    Article  ADS  Google Scholar 

  • Xu, Y., Chen, X., Zhu, Y.: “High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials. Sensors 8, 1872–1878 (2008)

    Article  ADS  Google Scholar 

  • Zhang, H., Chang, S., Yuan, J., Huang, D.: Supercontinuum generation in chloroform-filled photonic crystal fibers. Optik 121, 783–787 (2010)

    Article  ADS  Google Scholar 

  • Zhao, P., Reichert, M., Benis, S., Hagan, D.J., Stryland, E.W.V.: Temporal and polarization dependence of the nonlinear optical response of solvents. Optica 5, 583–594 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2020.03; Vietnam’s Ministry of Education and Training (B2021- DHH-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Chu Van or K. Doan Quoc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu Van, L., Nguyen Thi, T., Hoang Trong, D. et al. Comparison of supercontinuum spectrum generating by hollow core PCFs filled with nitrobenzene with different lattice types. Opt Quant Electron 54, 300 (2022). https://doi.org/10.1007/s11082-022-03667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03667-y

Keywords

Navigation