Skip to main content
Log in

Broadband supercontinuum generation with low peak power in controllable C7H8-core photonic crystal fibers of characteristic quantities

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a newly designed toluene-core (C7H8-core) photonic crystal fiber (PCF) with a hexagonal lattice. The difference in the diameter of the air holes in the first ring and the other rings improves the nonlinear properties of the fiber. By varying the filling factor d1/Λ (d1 is the air-hole diameter of the first lattice ring near the core) and lattice constant Λ of the PCF in the wavelength range of 0.5 μm to 2 μm, parameters such as dispersion and effective mode area could be optimized. The advantages of these PCFs are flat near-zero dispersion, small effective mode area, and high nonlinear coefficients. To analyze the nonlinear properties and supercontinuum generation, we selected two optimal structures from the simulation results. The optimal PCF only needs to deliver power at low peak power, but still achieves the best-broadened spectrum compared to previous works. The first fiber #F1 with a lattice constant (Λ = 1.0 µm) and filling factor (d1/Λ = 0.5) has all-normal dispersion and provides a supercontinuum (SC) spectrum in the range of 0.72 µm to 1.78 µm. It has a pump wavelength of 1.3 μm, a pulse width of 40 fs, and a peak power of 0.45 kW. The fiber #F2 enables supercontinuum generation in the anomalous dispersion regime with a pump wavelength of 1.5 μm and pulse width of 80 fs. The spectral width of fiber #F2 obtained with a peak power of 75 kW is 3.46 μm. The two proposed fibers have the potential to become new fiber types for all-fiber SC sources, as alternatives to glass-core fibers for next-generation broadband sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. J M Dudley, G Genty and S Coen Rev. Mod. Phys. 78 1135 (2006)

    ADS  CAS  Google Scholar 

  2. O Frãzao, J L Santos, F M Araújo and L A Ferreira Laser Photon. Rev. 2 44 (2008)

    Google Scholar 

  3. T Udem, R Holzwarth and T W Hänsch Nature 416 233 (2002)

    ADS  CAS  PubMed  Google Scholar 

  4. M Guillon, K Dholakia and D McGloin Opt. Express 16 7655 (2008)

    ADS  CAS  PubMed  Google Scholar 

  5. H Tu and S A Boppart Laser Photon. Rev. 7 628 (2013)

    ADS  CAS  Google Scholar 

  6. W J Ling, K Li and Y Y Zuo Appl. Mechan. and Mater. 302 194 (2013)

    ADS  Google Scholar 

  7. L Huanhuan, Y Ye, S W Song, J Qiao and P Fufei Opto-Electron. Adv. 2 1800201 (2019)

    Google Scholar 

  8. J C Knight, T A Birks, P S J Russell and D M Atkin Opt. Lett. 21 1547 (1996)

    ADS  CAS  PubMed  Google Scholar 

  9. J C Knight Nature 424 847 (2003)

    ADS  CAS  PubMed  Google Scholar 

  10. R Buczynski Acta Phys. Polon. A 106 141F (2004)

    ADS  Google Scholar 

  11. A V Husakou and J Herrmann Phys. Rev. Lett. 87 203901 (2001)

    ADS  CAS  PubMed  Google Scholar 

  12. J K Ranka, R S Windeler and A J Stentz Opt. Lett. 25 25 (2000)

    ADS  CAS  PubMed  Google Scholar 

  13. L E Hooper, P J Mosley, A C Muir, W J Wadsworth and J C Knight Opt. Express 19 4902 (2011)

    ADS  CAS  PubMed  Google Scholar 

  14. A V Gorbach, D V Skryabin, J M Stone and J C Knight Opt. Express 14 9854 (2006)

    ADS  CAS  PubMed  Google Scholar 

  15. B T L Tran et al. Photon. Lett. Pol. 106 (2020)

  16. N T Thuy, C T G Trang, L V Minh, T Q Vu, D Q Khoa, D X Khoa and C V Lanh Commun. Phys. 30 209 (2020)

    Google Scholar 

  17. N T Thuy, H T Duc, L T B Tran, D V Trong and C V Lanh Hue Univ. J. of Sci.: Nat. Sci. 130 55 (2021)

    Google Scholar 

  18. L T B Tran et al. J. Military Sci. Technol. 75A 46 (2021)

    Google Scholar 

  19. T Q Vu et al. Commun. Phys. 30 331 (2020)

    Google Scholar 

  20. N Q Vu et al. J. Military Sci. Technol. 61 183 (2019)

    Google Scholar 

  21. T Q Vu et al. Advances in Optics, Photonics, Spectroscopy & Applications XI. 232 (2021)

  22. D T Nhat, N M Linh, D L Chi, N T Trang, T Q Vu, D X Khoa and C V Lanh Advances in Applied and Engineering Physics—CAEP V. 200, (2018)

  23. Z X Jia et al. Laser Phys. Lett. 15 025102 (2018)

    ADS  Google Scholar 

  24. S Dai, Y Wang, X Peng, P Zhang, X Wang and Y Xu Appl. Sci. 8 707 (2018)

    Google Scholar 

  25. D Churin, T N Nguyen, K Kieu, R A Norwood and N Peyghambarian Opt. Mater. Express 3 1358 (2013)

    ADS  Google Scholar 

  26. S Junaid, J Bierlich, A Hartung, T Meyer, M Chemnitz and M A Schmidt Opt. Express 29 19891 (2021)

    ADS  CAS  PubMed  Google Scholar 

  27. H D Quang et al. Appl. Opt. 57 3738 (2018)

    ADS  Google Scholar 

  28. V T Hoang et al. Appl. Opt. 59 3720 (2020)

    ADS  PubMed  Google Scholar 

  29. V T Hoang, R Kasztelanic, A Filipkowski, G Stepniewski, D Pysz, M Klimczak, S Ertman and V C Long Opt. Mater. Express 9 2264 (2019)

    ADS  CAS  Google Scholar 

  30. C V Lanh, H V Thuy, C L Van, K Borzycki, D X Khoa, T Q Vu, M Trippenbach, R Buczyński and J Pniewski Laser Phys. 29 075107 (2019)

    ADS  CAS  Google Scholar 

  31. C V Lanh, H V Thuy, K Borzycki, D X Khoa, T Q Vu, M Trippenbach, R Buczyński and J Pniewski Laser Phys. 30 035105 (2020)

    ADS  Google Scholar 

  32. C V Lanh, N T Thuy, H T Duc, L T B Tran, V T M Ngoc, D V Trong, L C Trung, H D Quang and D Q Khoa Opt. Quant. Electron. 54 300 (2022)

    Google Scholar 

  33. L C Van, H V Thuy, V C Long, K Borzycki, K D Xuan, V T Quoc, M Trippenbach, R Buczyński and J Pniewski Opt. Eng. 60 116109 (2021)

    ADS  Google Scholar 

  34. L V Hieu, H V Thuy, N T Hue, C L Van, R Buczyński and R Kasztelanic Opt. Quant. Electron. 53 187 (2021)

    Google Scholar 

  35. C V Lanh, L V Hieu, D N Nguyen, V T M Ngoc, H D Quang, H V Thuy, N T Thuy and C V Bien Laser Phys. 32 055102 (2022)

    ADS  Google Scholar 

  36. L V Hieu, H V Thuy, H D Quang, N T Hue, V T M Ngoc, M Klimxzak, R Buczynski and R Kasztelanic Appl. Opt. 60 7268 (2021)

    ADS  Google Scholar 

  37. L C Van, A Anuszkiewicz, A Ramaniuk, R Kasztelanic, K D Xuan, V C Long, M Trippenbach and R Buczynski J. Opt. 9 125604 (2017)

    ADS  Google Scholar 

  38. H V Thuy et al. Opt. Mater. Express 8 3568 (2018)

    ADS  Google Scholar 

  39. C Wei, J T Young, C R Menyuk and J Hu OSA Continuum. 2 2123 (2019)

    CAS  Google Scholar 

  40. M R Karim, H Ahmad and B M A Rahman J. Opt. Fiber Technol. 45 255 (2018)

    ADS  CAS  Google Scholar 

  41. N T Thuy, H T Duc and C V Lanh Laser Phys. 33 055102 (2023)

    ADS  Google Scholar 

  42. T T B Le, O T T Chuyen, T N Thi and L C Van Majlesi J. Electr. Eng. 16 55 (2022)

    Google Scholar 

  43. T N Thi, D H Trong, B T L Tran, T D Van and L C Van J. Opt. 51 678 (2022)

    Google Scholar 

  44. S Kedenburg, M Vieweg, T Gissibl and H Giessen Opt. Mater. Express 2 1588 (2012)

    ADS  CAS  Google Scholar 

  45. Mode Solution. Lumerical Solutions, Inc., Available at: www.lumerical.com/tcad-products/mode/

  46. K Saitoh, M Koshiba, T Hasegawa and E Sasaoka Optics Express 11 843 (2003)

    ADS  PubMed  Google Scholar 

  47. D Pysz et al. Bull. Pol. Acad. Sci: Tech. Sci. 62 667 (2014)

    CAS  Google Scholar 

  48. L Xiao, W Jin, M Demokan, H Ho, Y Hoo and C Zhao Opt. Express 13 9014 (2005)

    ADS  PubMed  Google Scholar 

  49. M Vieweg, T Gissibl, S Pricking, B T Kuhlmey, D C Wu, B J Eggleton and H Giessen Opt. Express 18 25232 (2010)

    ADS  CAS  PubMed  Google Scholar 

  50. Y Arosa and R de la Fuente Opt. Lett. 45 4268 (2020)

    ADS  PubMed  Google Scholar 

  51. K Moutzouris, M Papamichael, S C Betsis, I Stavrakas, G Hloupis and D Triantis Appl. Phys. B 116 617 (2013)

    ADS  Google Scholar 

  52. C Z Tan J Non-Cryst. Solids 223 158 (1998)

    ADS  CAS  Google Scholar 

  53. G P Agrawal Nonlinear Fiber Optics, 5th edn. (Elsevier: Academic Press) (2013)

    Google Scholar 

  54. F Koohi-Kamalia, M Ebnali-Heidarib and M K Moravvej-Farshic Int. J. Opt. Photon. (IJOP) 6 83 (2012)

    Google Scholar 

  55. J M Dudley and J R Taylor Supercontinuum Generation in Optical Fibers (Cambridge: Cambridge University Press) (2010)

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Lanh Chu Van: Conceptualization, Methodology, Writing—original draft, Supervision, Writing—review & editing. Trong Dang Van: Writing—original draft, Visualization, Investigation, Data curation.

Corresponding author

Correspondence to Lanh Chu Van.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, L.C., Van, T.D. Broadband supercontinuum generation with low peak power in controllable C7H8-core photonic crystal fibers of characteristic quantities. Indian J Phys 98, 1061–1071 (2024). https://doi.org/10.1007/s12648-023-02830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02830-9

Keywords

Navigation