Skip to main content
Log in

A DFT study of electronic, vibrational and optical properties of gold clusters

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Correction to this article was published on 01 March 2022

This article has been updated

Abstract

Density functional theory has a central position in the literature to demonstrate the materials' physical and structural properties that are extremely useful for the human’s daily life. Gold is the multipurpose material that has been utilized for examining the technological applications. In this work calculations depend on the framework of first principle DFT computations that are performed to design the gold clusters for the enhancement of Electronic, Optical and Vibrational properties. Density of State and the HUMO-LUMO gap are calculated for the prediction of the electronic properties. Optical properties are calculated with the help of HUMO-LUMO gap and IR spectra. Vibrational properties are calculated with the help of Infrared Intensity and partial Infrared Intensity. Furthermore, DFTB method has been utilized to design these Gold clusters which are size dependent and it is observed that quantum confinement effects narrowed the energy gap. It is expected that this work will be beneficial for the modification of the gold clusters characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article.

Change history

References

  • Afsheen, S., Iqbal, T., Aftab, M., Bashir, A., Tehseen, A., Khan, M.Y., Ijaz, M.: Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater. Res. Exp. 6(12), 126203 (2019)

    Article  Google Scholar 

  • Alex, S., Tiwari, A.: Functionalized gold nanoparticles: synthesis, properties and applications—a review. J. Nanosci. Nanotechnol. 15(3), 1869–1894 (2015)

    Article  Google Scholar 

  • Chevrier, D.M., Chatt, A., Zhang, P.: Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. J. Nanophoton. 6(1), 064504 (2012)

    Article  Google Scholar 

  • Cleveland, C.L., Landman, U., Shafigullin, M.N., Stephens, P.W., Whetten, R.L.: Structural evolution of larger gold clusters. Zeitschrift Für Physik D Atoms Mol. Clust. 40(1), 503–508 (1997)

    Article  ADS  Google Scholar 

  • Cleveland, C., Luedtke, W., Landman, U.: Melting of gold clusters. Phys. Rev. B 60(7), 5065 (1999)

    Article  ADS  Google Scholar 

  • Fa, W., Zhou, J., Luo, C., & Dong, J.: Cage-like Au32 detected by calculated optical spectroscopy. arXiv preprint cond-mat/0507570 (2005)

  • Frenkel, A.: Solving the 3D structure of metal nanoparticles. Zeitschrift Für Kristallogr. Crystal. Mater. 222(11), 605–611 (2007)

    Article  ADS  Google Scholar 

  • Gao, Y., Bulusu, S., Zeng, X.C.: Gold-caged metal clusters with large HOMO− LUMO gap and high electron affinity. J. Am. Chem. Soc. 127(45), 15680–15681 (2005)

    Article  Google Scholar 

  • Garzon, I., & Sauceda, H.: Structural determination of metal nanoparticles from their vibrational (phonon) density of states. Paper presented at the APS March Meeting Abstracts (2015)

  • Ijaz, M., Aftab, M., Afsheen, S., Iqbal, T.: Novel Au nano-grating for detection of water in various electrolytes. Appl. Nanosci. 10(11), 4029–4036 (2020a)

    Article  ADS  Google Scholar 

  • Ijaz, M., Zafar, M., Afsheen, S., Iqbal, T.: A review on Ag-nanostructures for enhancement in shelf time of fruits. J. Inorg. Organomet. Polym Mater. 30(5), 1475–1482 (2020b)

    Article  Google Scholar 

  • Iqbal, T., Noureen, S., Afsheen, S., Khan, M.Y., Ijaz, M.: Rectangular and sinusoidal Au-grating as plasmonic sensor: a comparative study. Opt. Mater. 99, 109530 (2020a)

    Article  Google Scholar 

  • Iqbal, T., Tabassum, H., Afsheen, S., & Ijaz, M.: Novel exposed and buried Au plasmonic grating as efficient sensors. Waves in Random and Complex Media, 1–12 (2020)

  • Jain, P.K.: A DFT-based study of the low-energy electronic structures and properties of small gold clusters. Struct. Chem. 16(4), 421–426 (2005)

    Article  Google Scholar 

  • Jena, P.: Physics and chemistry of small clusters, vol. 158. Springer, New York (2013)

    Google Scholar 

  • Jena, P., Sun, Q.: Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118(11), 5755–5870 (2018)

    Article  Google Scholar 

  • Jin, R.: Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3), 343–362 (2010)

    Article  ADS  Google Scholar 

  • Johnston, R.L.: Atomic and molecular clusters. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  • Karimova, N. V.: Theoretical study of the optical properties of the noble metal nanoparticles: CD and MCD spectroscopy: Kansas State University (2017)

  • Khlebtsov, N., Dykman, L.: Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40(3), 1647–1671 (2011)

    Article  Google Scholar 

  • Kurashige, W., Niihori, Y., Sharma, S., Negishi, Y.: Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 320, 238–250 (2016)

    Article  Google Scholar 

  • Kwak, K., Thanthirige, V.D., Pyo, K., Lee, D., Ramakrishna, G.: Energy gap law for exciton dynamics in gold cluster molecules. The J. Phys. Chem. Lett. 8(19), 4898–4905 (2017)

    Article  Google Scholar 

  • Li, X.-J., Ren, H.-J., & Yang, L.-M.: An investigation of electronic structure and aromaticity in medium-sized nanoclusters of gold-doped germanium. J. Nanomater. 2012, 1–8 (2012)

  • Lu, Y., Chen, W.: Progress in the synthesis and characterization of gold nanoclusters. Gold Clust. Coll. Nanopart. I, 117–153 (2013)

    Google Scholar 

  • Magruder, R., III., Yang, L., Haglund, R., Jr., White, C., Yang, L., Dorsinville, R., Alfano, R.: Optical properties of gold nanocluster composites formed by deep ion implantation in silica. Appl. Phys. Lett. 62(15), 1730–1732 (1993)

    Article  ADS  Google Scholar 

  • Majid, A., Fatima, S., Dar, A.: A density functional theory study of electronic properties of Ce: GaN. Comput. Mater. Sci. 79, 929–932 (2013)

    Article  Google Scholar 

  • Majid, A., Batool, A., Khan, S.U.D., Haider, S.: First-principles study of vibrational properties of TiSiO4 clusters. Int. J. Quant. Chem. 119(14), e25924 (2019a)

    Article  Google Scholar 

  • Majid, A., Jabeen, A., Khan, S.U.-D., Haider, S.: First principles investigations of vibrational properties of titania and zirconia clusters. J. Nanopart. Res. 21(1), 20 (2019b)

    Article  ADS  Google Scholar 

  • Mendoza-Huizar, L.H., Palomar-Pardave, M., Robles, J.: A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on the Au (100) surface modeled as finite clusters. J. Mol. Struct. (thoechem) 679(3), 187–194 (2004)

    Article  Google Scholar 

  • Nabi, A., Akhtar, Z., Iqbal, T., Ali, A., Javid, M.A.: The electronic and magnetic properties of wurtzite Mn: CdS, Cr: CdS Mn: Cr: CdS: first principles calculations. J. Semicond. 38(7), 073001 (2017)

    Article  ADS  Google Scholar 

  • Nieto-Ortega, B., Bürgi, T.: Vibrational properties of thiolate-protected gold nanoclusters. Acc. Chem. Res. 51(11), 2811–2819 (2018)

    Article  Google Scholar 

  • Palpant, B., Prével, B., Lermé, J., Cottancin, E., Pellarin, M., Treilleux, M., Broyer, M.: Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57(3), 1963 (1998)

    Article  ADS  Google Scholar 

  • Perez, S. M. V.: Insights into large thiolate-protected gold clusters and nanoparticles. The University of Texas at San Antonio (2018)

  • Pyykkö, P.: Theoretical chemistry of gold II. Inorg. Chimica Acta 358(14), 4113–4130 (2005)

    Article  Google Scholar 

  • Qian, H., Zhu, M., Wu, Z., Jin, R.: Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45(9), 1470–1479 (2012)

    Article  Google Scholar 

  • Ranjan, P., Chakraborty, T.: Structure and electronic properties of Au n Pt (n= 1–8) nanoalloy clusters: the density functional theory study. J. Nanopart. Res. 22(2), 1–11 (2020)

    Article  Google Scholar 

  • Ranjan, P., Kumar, A., & Chakraborty, T.: Computational investigation of Ge doped au nanoalloy clusters: a DFT study. Paper presented at the IOP conference series: materials science and engineering (2016)

  • Sardar, R., Funston, A.M., Mulvaney, P., Murray, R.W.: Gold nanoparticles: past, present, and future. Langmuir 25(24), 13840–13851 (2009)

    Article  Google Scholar 

  • Sauceda, H.E., Garzón, I.L.: Structural determination of metal nanoparticles from their vibrational (phonon) density of states. The Journal of Physical Chemistry C 119(20), 10876–10880 (2015)

    Article  Google Scholar 

  • Schmidbaur, H.: Gold chemistry: applications and future directions in the life sciences. Wiley, Hoboken (2009)

    Google Scholar 

  • Shafqat, A., Iqbal, T., Majid, A.: A DFT study of intrinsic point defects in monolayer MoSe2. AIP Adv. 7(10), 105306 (2017)

    Article  ADS  Google Scholar 

  • Sun, Y., Cai, X., Hu, W., Liu, X., Zhu, Y.: Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Sci. China Chem. 64(7), 1065–1075 (2021)

    Article  Google Scholar 

  • Tlahuice-Flores, A., Muñoz-Castro, A.: Bonding and properties of superatoms. Analogs to atoms and molecules and related concepts from superatomic clusters. Int. J. Quant. Chem. 119(2), e25756 (2019)

    Article  Google Scholar 

  • Van den Bossche, M.: DFTB-assisted global structure optimization of 13-and 55-atom late transition metal clusters. J. Phys. Chem. A 123(13), 3038–3045 (2019)

    Article  Google Scholar 

  • Varnavski, O., Ramakrishna, G., Kim, J., Lee, D., Goodson, T.: Critical size for the observation of quantum confinement in optically excited gold clusters. J. Am. Chem. Soc. 132(1), 16–17 (2010)

    Article  Google Scholar 

  • Vishwanathan, K., Springborg, M.: Vibrational heat capacity of gold cluster AuN= 14 at low temperatures. J. Phys. Chem. Biophys. 6(232), 2161–398 (2016)

    Google Scholar 

  • Xiao, L., Tollberg, B., Hu, X., Wang, L.: Structural study of gold clusters. The J. Chem. Phys. 124(11), 114309 (2006)

    Article  ADS  Google Scholar 

  • Zafar, M., Ijaz, M., & Iqbal, T.: Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chemical Papers, 1–17 (2021)

  • Zeng, C., Chen, Y., Li, G., Jin, R.: Magic size Au64 (S-c-C6H11) 32 nanocluster protected by cyclohexanethiolate. Chem. Mater. 26(8), 2635–2641 (2014)

    Article  Google Scholar 

  • Zeng, C., Chen, Y., Iida, K., Nobusada, K., Kirschbaum, K., Lambright, K.J., Jin, R.: Gold quantum boxes: on the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 138(12), 3950–3953 (2016)

    Article  Google Scholar 

  • Zhang, Y., Chu, W., Foroushani, A.D., Wang, H., Li, D., Liu, J., Yang, W.: New gold nanostructures for sensor applications: a review. Materials 7(7), 5169–5201 (2014)

    Article  ADS  Google Scholar 

  • Zhang, J., & Glezakou, V.-A.: The artificial bee colony algorithm for global optimization of nanosized clusters. J. Chem. Theor. Comput. (2020). https://doi.org/10.1021/acs.jctc.9b01107

  • Zhao, J., Yang, J., Hou, J.: Theoretical study of small two-dimensional gold clusters. Phys. Rev. B 67(8), 085404 (2003)

    Article  ADS  Google Scholar 

  • Zhou, M., Zeng, C., Chen, Y., Zhao, S., Sfeir, M.Y., Zhu, M., Jin, R.: Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 7(1), 1–7 (2016)

    Article  ADS  Google Scholar 

  • Zhou, M., Higaki, T., Li, Y., Zeng, C., Li, Q., Sfeir, M.Y., Jin, R.: Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 141(50), 19754–19764 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the efforts of King Khalid University, Saudi Arabia (Deanship of Scientific Research) for support through the Research Groups Project under the grant number (R.G.P.2/169/42).

Funding

Applicable.

Author information

Authors and Affiliations

Authors

Contributions

TI: Conceptualization, Supervision. AA: Writing—original draft. AM: Conceptualization, Formal analysis. MZ: Data curation. MS: Project administration. SU: Funding acquisition. MH: Validation, Funding acquisition.

Corresponding authors

Correspondence to Tahir Iqbal or Maria Zafar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, T., Azam, A., Majid, A. et al. A DFT study of electronic, vibrational and optical properties of gold clusters. Opt Quant Electron 54, 74 (2022). https://doi.org/10.1007/s11082-021-03446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03446-1

Keywords

Navigation