Skip to main content
Log in

Structure and electronic properties of AunPt (n = 1–8) nanoalloy clusters: the density functional theory study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The study of bimetallic nanoalloy clusters is of considerable interest due to its interesting electronic, optical, magnetic and catalytic properties. The geometrical structure and electronic properties of AunPt (n = 1–8) nanoalloy clusters are studied by using the density functional theory methodology. The result exhibits that the ground-state configurations of AunPt clusters favour planar confirmation in this molecular range. The most stable cluster is Au3Pt, which is having rhombus structure with symmetry group C2v and can be considered as building blocks for developing large clusters. The computed HOMO-LUMO energy gap of Au3Pt nanoalloy cluster is 1.741 eV. The energy gap in this particular range supports the use of bimetallic clusters as nonlinear optical devices and optoelectronic materials. The DFT-based global descriptors viz. HOMO-LUMO energy gap, electronegativity, hardness, softness and electrophilicity index are also studied. The computed HOMO-LUMO energy gap and chemical hardness exhibit a pronounced odd-even oscillation behaviour as a function of cluster size, n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Airola MB, Morse MD (2002) Rotationally resolved spectroscopy of Pt2. J Chem Phys 116:1313–1317

    CAS  Google Scholar 

  • Aktürk OÜ, Tomak M (2009) AunPtn clusters adsorbed on graphene studied by first-principles calculations. Phys Rev B 80:085417

    Google Scholar 

  • Alonso JA (2000) Electronic and atomic structure, and magnetism of transition-metal clusters. Chem Rev 100:637–678

    CAS  Google Scholar 

  • Assadollahzadeh B, Schwerdtfeger P (2009) A systematic search for minimum structures of small gold clusters Aun (n=2-20) and their electronic properties. J Chem Phys, 064306 131

  • Bonacic-Koutecký V, Fantucci P, Koutecký J (1991) Quantum chemistry of small clusters of elements of group Ia Ib, and IIa: fundamental concepts, predictions and interpretation of eperiments. Chem Rev 91:1035–1108

    Google Scholar 

  • Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn LT, Weidele H, Lievens P, Silverans RE (1999) Stability effects of AunXm+ (X=Cu, Al, Y, In) clusters. Chem Phys Lett 314:227–233

    CAS  Google Scholar 

  • Boyen HG, Kastle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmuller S, Hartmann C, Moller M, Schmid G, Garnier MG, Oelhafen P (2002) Oxidation-resistant gold-55 clusters. Science 297:1533–1536

    CAS  Google Scholar 

  • Chen FY, Johnston RL (2007) Structure and special characteristics of the nanoalloy Ag3Au10. Appl Phys Lett 90:153123

    Google Scholar 

  • Chen FY, Johnston RL (2008) Charge transfer driven surface segregation of gold atoms in 13-atom au-Ag nanoalloys and its relevance to their structural, optical and electronic properties. Acta Mater 56:2374–2380

    CAS  Google Scholar 

  • Cheng HP, Barnett RN, Landman U (1993) Energetics and structures of aluminium-lithium clusters. Phys Rev B 48:1820–1824

    CAS  Google Scholar 

  • Chi Y, Zhao L, Lu X, An C, Guo W, Wu CML (2016) Effect of alloying on the stabilities and catalytic properties of Pt-Au bimetallic subnanoclusters: a theoretical investigation. J Nanopart Res 18:78–89

    Google Scholar 

  • Dong D, Xiao YK, Jian JG, Ben XZ (2010) Density functional theory study of AunMn (n=1-8) clusters. J Phys Chem Solids 71:770–775

    CAS  Google Scholar 

  • Dong D, Xiao YK, Bing Z, Jian JG (2011) Geometrical, electronic and magnetic properties of small AunSc (n=1-8) clusters. Phys B 406:3160–3165

    Google Scholar 

  • Du RB, Xu YQ, Wu X, Liu T (2019) Geometrical structures of trimetallic Ag-Pd-Pt and Au-Pd-Pt clusters up to 147 atoms. Struct Chem 30:637–645

    CAS  Google Scholar 

  • Fabbi JC, Langenberg JD, Costello QD, Morse MD, Karlsson L (2001) Dispersed fluorescence spectroscopy of jet-cooled AgAu and Pt2. J Chem Phys 115:7543–7549

    CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian Inc, Wallingford CT

  • Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Structural, electronic and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem 42:1297–1300

    Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    CAS  Google Scholar 

  • Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676

    Google Scholar 

  • Heinebrodt M, Malinowski N, Tast F, Branz W, Billas IML, Martin TP (1999) Bonding character of bimetallic clusters AunXm (X=Al, In, Cs). J Chem Phys 110:9915–9921

    CAS  Google Scholar 

  • Hu Y, Kong F, Wang S, Yuan Y, Jin L (2013) The geometric structures, stabilities, and electronic properties of bimetallic Rb2Aun (n=1-10) clusters: a density functional theory study. J Mol Struct 1035:165–173

    CAS  Google Scholar 

  • James AM, Kowalczyk P, Simmard B, Pinegar JC, Morse MD (1994) The A’ 1u X0+ g system of gold dimer. J Mol Spectrosc 168:248–257

    CAS  Google Scholar 

  • Janssens E, Neukermans S, Lievens P (2004) Shells of electrons in metal doped simple metal clusters. Curr Opin Solid State Mater Sci 8:185–193

    CAS  Google Scholar 

  • Jian JG, Ji XY, Dong D (2006) First principle calculation on AunPt2 (n=1-4) clusters. THEOCHEM J Mol Struct 764:117–121

    Google Scholar 

  • Jinnouchi R, Suzuki KKT, Morimoto Y (2016) DFT calculations on electro-oxidations and dissolutions of Pt and Pt-Au nanoparticles. Catal Today 262:100–109

    CAS  Google Scholar 

  • Jug K, Zimmermann B, Calaminici P, Köster AM (2002) Structure and stability of small copper clusters. J Chem Phys 116:4497–4507

    CAS  Google Scholar 

  • Koszinowski K, Schrӧder D, Schwarz H (2003) Additivity effects in the reactivities of bimetallic cluster ions PtmAun+. ChemPhysChem 4:1233–1237

    CAS  Google Scholar 

  • Kuang XJ, Wang XQ, Liu GB (2011) Structural, electronic and magnetic properties of AunPt (n=1-12) clusters in comparison with corresponding pure Aun+1 (n=1-12) clusters. Eur Phys J D 63:111–122

    CAS  Google Scholar 

  • Li X, Kuznetsov AE, Zhang HF, Boldyrev AI, Wang LS (2001) Observation of all-metal aromatic molecules. Science 291:859–861

    CAS  Google Scholar 

  • Li X, Kiran B, Li J, Zhai HJ, Wang LS (2002) Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew Chem 41:4786–4789

    CAS  Google Scholar 

  • Li J, Li X, Zhai HJ, Wang LS (2003) Au20: a tetrahedral cluster. Science 299:864–867

    CAS  Google Scholar 

  • Li XZ, Xiao JF, Ting TC (2009) Density functional study of Al-doped Au clusters. Chin Phys B 18:2709–2718

    Google Scholar 

  • Li YF, Mao AJ, Li Y, Kuang XY (2012) Density functional study on size-dependent structures, stabilities, electronic and magnetic properties of AunM (M= Al, and Si, n=1-9) clusters: comparison with pure gold clusters. J Mol Model 18:3061–3072

    CAS  Google Scholar 

  • Mondal K, Banerjee A, Ghanty TK (2014) Structural and chemical properties of subnanometer-sized bimetallic Au19Pt cluster. J Phys Chem C 118:11935–11945

    CAS  Google Scholar 

  • Moreno N, Ferraro F, Florez E, Hadad CZ, Restrepo A (2016) Spin-orbit coupling effects in AumPtn clusters (m+n=4). J Phys Chem A 120:1698–1705

    CAS  Google Scholar 

  • Morse MD (1986) Clusters of transition-metal atoms. Chem Rev 86:1049–1109

    CAS  Google Scholar 

  • Neukermans S, Janssens E, Tanaka H, Silverans RE, Lievens P (2003) Element- and size-dependent electron delocalization in AuNX+ clusters (X= Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Phys Rev Lett 90:033401

    CAS  Google Scholar 

  • Panizon E, Bochicchio D, Rossi G, Ferrando R (2014) Tuning the structure of nanoparticles by small concentrations of impurities. Chem Mater 26:3354–3356

    CAS  Google Scholar 

  • Parr RG, Szentpaly LS (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York, Oxford

    Google Scholar 

  • Pyykkö P, Runeberg N (2002) Icosahedral WAu12: a predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with 18-electron rule. Angew Chem 41:2174–2176

    Google Scholar 

  • Ranjan P, Chakraborty T (2018) A DFT study of vanadium doped gold nanoalloy clusters. Key Eng Mater 777:183–189

    Google Scholar 

  • Ranjan P, Chakraborty T (2019) Density functional approach; to study copper sulphide nanoalloy clusters. Acta Chim Slov 66:173–181

    CAS  Google Scholar 

  • Ranjan P, Kumar A, Chakraborty T (2014a) In: Mishra GM (ed) Environmental sustainability: concepts, Principles, Evidences and Innovations. Excellent Publishing House, New Delhi

  • Ranjan P, Venigalla S, Kumar A, Chakraborty T (2014b) Theoretical study of bi-metallic AgmAun; (m+n=2-8) nanoalloy clusters in terms of DFT methodology. New Front Chem 23:111–122

    Google Scholar 

  • Ranjan P, Kumar A, Chakraborty T (2014c) Computational investigation of Ge doped au nanoalloy clusters: a DFT study. IOP Conf Ser: Mater Sci Eng 149:012172

    Google Scholar 

  • Ranjan P, Dhail S, Venigalla S, Kumar A, Ledwani CT (2015) A theoretical analysis of bi-metallic (Cu-Ag)n=1-7 nano alloy clusters invoking DFT based descriptors. Mat Sci–Pol 33:719–724

    CAS  Google Scholar 

  • Ranjan P, Kumar A, Chakraborty T (2016a) Computational study of AuSin (n=1-9) nanoalloy clusters invoking DFT based descriptors. AIP Conf Proc 1724:020072

    Google Scholar 

  • Ranjan P, Kumar A, Chakraborty T (2016b) Theoretical analysis: electronic and optical properties of gold-silicon nanoalloy clusters. Mater Today Proc 3:1563–1568

    Google Scholar 

  • Ranjan P, Kumar A, Chakraborty T (2016c) Computational study of AumSin (m+n=2-6) nanoalloy clusters invoking density functional based descriptors. J Phys Conf Ser 759:012045

    Google Scholar 

  • Ranjan P, Chakraborty T, Kumar A (2017a) Computational investigation of cationic, anionic, and neutral Ag2AuN (N=1-7) nanoalloy clusters. Phys Sci Rev 2:20160112

    Google Scholar 

  • Ranjan P, Chakraborty T, Kumar A (2017b) Computational study of Au doped Cu nanoalloy clusters. Nano Hybrids 17:62–71

    Google Scholar 

  • Shetty S, Pal S, Kanhere DG (2003) A study of electronic and bonding properties of Sn doped Lin clusters and aluminium based binary clusters through electron localization function. J Chem Phys 118:7288–7296

    CAS  Google Scholar 

  • Simmard B, Hackett P (1990) High resolution study of the (0,0) and (1,1) bands of the A0u+−X0g+ system of Au2. J Mol Spectrosc 142:310–318

    Google Scholar 

  • Sun J, Xie X, Cao B, Duan H (2017) A density-functional theory study of Au13, Pt13, Au12Pt and Pt12Au clusters. Comput Theor Chem 1107:127–135

    CAS  Google Scholar 

  • Taylor S, Lemire GW, Hamrick YM, Fu Z, Morse MD (1988) Resonant two-photon ionization spectroscopy of jet-cooled Pt2. J Chem Phys 89:5517–5523

    CAS  Google Scholar 

  • Tian WQ, Ge M, Gu F, Yamada T, Aoki Y (2006) Binary clusters AuPt and Au6Pt: structure and reactivity within density functional theory. J Phys Chem A 110:6285–6293

    CAS  Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of non-metallic properties. Science 281:1647–1650

    CAS  Google Scholar 

  • Wang HQ, Kuang XY, Li HF (2010) Density functional study of structural and electronic properties of bimetallic copper-gold clusters: comparison with pure and doped gold clusters. Phys Chem Chem Phys 12:5156–5165

    CAS  Google Scholar 

  • Xiao H, Kheli JT, Goddard WA III (2011) Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett 2:212–217

    CAS  Google Scholar 

  • Yuan DW, Wang Y, Zeng Z (2005) Geometric, electronic and bonding properties of AuNM (N=1-7, M= Ni, Pd, Pt) clusters. J Chem Phys 122:114310

    CAS  Google Scholar 

  • Yuan HK, Kuang AL, Tian CL, Chen H (2014) Structural and electronic properties of Aun-x Ptx (n=2-14; x≤n) clusters. AIP Adv 4:037107

    Google Scholar 

  • Zhao S, Zhao Z, Ren Y, Yao K, Tian X (2019) Structural and electronic properties of full range of ternary PtmAunAgl (m+n+l= 5, 6, and 7) clusters: a density functional theory investigation. Mol Phys. https://doi.org/10.1080/00268976.2019.1605100

  • Zhu B, Die D, Li RC, Lan H, Zheng BX, Li ZQ (2017) Insights into the structural, electronic and magnetic properties of Ni-doped gold clusters: comparison with pure gold clusters. J Alloys Compd 696:402–412

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the Presidency University, Bengaluru and Manipal University, Jaipur, for their support to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prabhat Ranjan or Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, P., Chakraborty, T. Structure and electronic properties of AunPt (n = 1–8) nanoalloy clusters: the density functional theory study. J Nanopart Res 22, 35 (2020). https://doi.org/10.1007/s11051-019-4745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4745-5

Keywords

Navigation