Skip to main content
Log in

Numerical optimization of (FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au) perovskite solar cell using solar capacitance simulator with efficiency above 23% predicted

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The presented study deals with the investigations of the methyl ammonium tin halide (CH3NH3SnI3) based perovskite solar cells for optimized device performance using solar capacitance simulations software. Several necessary parameters such as metal work functions, thickness of structural layers, charge carrier’s mobility and defect density have been explored to evaluate the device performance. Calculations reveal that for the best efficiency of device the maximum thickness of the perovskite (CH3NH3SnI3) absorber layer must be 4.2 μm. The thickness values of 0.01 μm for ZnO electron transport layer (ETL), 0.871 μm for GaAs hole transport layer and 0.001 μm for CdS buffer layer have been found which proved to be optimum for maximum power conversion efficiency (PCE) of 23.80% for the device. The variation of open circuit voltage (Voc), Short circuit current (Jsc), Fill Factor (FF %), quantum efficiency (QE) against thickness of all layers and interface defect densities in FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au composition have been critically explored and their crucial role for the device performance has been reported. Heterojunctions between ZnO-ETL and CdS buffer layers have shown improved device performance and PCE. Current investigations may prove to be useful for designing and fabrication of climate friendly, non-toxic and highly efficient solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are thankful to the Marc. Burgelman and his team at the electronics and Information Systems (ELIS), University of Gent, Belgium for provision of access to SCAPS software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Qasim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, I., Ahmad, O., Rashid, A. et al. Numerical optimization of (FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au) perovskite solar cell using solar capacitance simulator with efficiency above 23% predicted. Opt Quant Electron 53, 713 (2021). https://doi.org/10.1007/s11082-021-03361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03361-5

Keywords

Navigation