Skip to main content
Log in

Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Erbium-doped fiber amplifier (EDFA) is widely recognized as one of the most important optical amplifiers in distributed optical fiber sensors which has been able to compensate the loss of the optical power. The 980 nm and 1480 nm are the most efficient pumps for amplifying the 1550 nm signal in EDFA. This paper presented an investigation for influences of pump power, signal power and EDF length on the gain and noise figure in an EDFA which pumped by 980 nm and 1480 nm pumps. It is also a comparison for each of the created gain and noise figure at the forward, backward, and bi-directional pumping configurations, separately. The effects of Rayleigh scattering, temperature, homogeneous interactions between Erbium ions and the amplified spontaneous emission are considered. As a result, Bi-directional pumping shows the highest gain value, and forward pumping presents the lowest noise figure for each pump. Moreover, backward pumping creates the highest noise figure and forward pumping generated the lowest gain value. The gain of 980 nm pump is higher than 1480 nm up to 5-m EDF length and for longer lengths, it becomes vice versa. The 980 nm pump caused a lower noise figure than 1480 nm for EDF length up to 10 m and it becomes vice versa for longer lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Billon, A., et al.: Qualification of a distributed optical fiber sensor bonded to the surface of a concrete structure: a methodology to obtain quantitative strain measurements. Smart Mater. Struct. 24(11), 115001 (2015)

    Article  ADS  Google Scholar 

  • Bouzid, B.: Theoretical analysis of erbium doped fiber amplifier. In: Electronics, Communications and Photonics Conference (SIECPC), Saudi International. IEEE (2011)

  • Cheng, C., Xiao, M.: Optimization of a dual pumped L-band erbium-doped fiber amplifier by genetic algorithm. IEEE J. Lightwave Technol. 24, 3824–3829 (2006)

    Article  ADS  Google Scholar 

  • Cokrak, A.C., Altuncu, A.: Gain and noise figure performance of erbium doped fiber amplifiers (EDFA). J. Electr. Electron. Eng. 4(2), 1111–1122 (2004)

    Google Scholar 

  • Desurvire, E.: Erbium-Doped Fiber Amplifier: Principles and Applications. Wiley, Hoboken (1994)

    Google Scholar 

  • Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  • Giles, C.R., Desurvire, E.: Modeling erbium-doped fiber amplifiers. IEEE J. Lightwave Technol. 9, 271–283 (1991)

    Article  ADS  Google Scholar 

  • Hamzah, A., Azrin, N.N.A., Saris, N.N.H.: Flat-gain and wideband EDFA by using dual stage amplifier technique. J. Telecommun. Electron. Comput. Eng. (JTEC) 10(2–6), 25–29 (2018)

    Google Scholar 

  • Harun, S.W., Samsuri, N.N., Ahmad, H.: Partial gain clamping in two stage double pass L band EDFA using a ring resonator. IEEE (2004)

  • Liu, X., Lee, B.: A fast and stable method for Raman amplifier propagation equations. Opt. Express 11, 2163–2176 (2003a)

    Article  ADS  Google Scholar 

  • Liu, X., Lee, B.: Effective shooting algorithm and its application to fiber amplifiers. Opt. Express 11, 1452–1461 (2003b)

    Article  ADS  Google Scholar 

  • Mao, Q., et al.: A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber. Opt. Commun. 159(1), 149–157 (1999)

    Article  ADS  Google Scholar 

  • Merlo, S., et al.: Runways ground monitoring system by phase-sensitive optical-fiber OTDR. In: 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE (2017)‏

  • Mowla, A., Granpayeh, N.: A novel design approach for erbium-doped fiber amplifiers by particle swarm optimization. Prog. Electromagn. Res. 3, 103–118 (2008a)

    Article  Google Scholar 

  • Mowla, A., Granpayeh, N.: Design of a flat gain multipumped distributed fiber Raman amplifier by particle swarm optimization. J. Opt. Soc. Am. A 25, 3059–3066 (2008b)

    Article  ADS  Google Scholar 

  • Naji, A.W., Hamida, B.A., Cheng, X.S., Mahdi, M.A., Harun, S., Khan, S., Al-Khateeb, W.F., Zaidan, A.A., Zaidan, B.B., Ahmad, H.: Review of erbium-doped fiber amplifier. Int. J. Phys. Sci. 6(20), 4674–4689 (2011)

    Google Scholar 

  • Ono, H., et al.: 1.58/spl mu/m band Er/sup3+/-doped fibre amplifier pumped in the 0.98 and 1.48/spl mu/m bands. Electron. Lett. 33(10), 876–877 (1997)

    Article  MathSciNet  Google Scholar 

  • Ono, H., et al.: Comparison of amplification characteristics of 1.58 and 1.55/spl mu/m band EDFAs. Electron. Lett. 34(15), 1509–1510 (1998a)

    Article  Google Scholar 

  • Ono, H., et al.: Signal output characteristics of 1.58 µm band gain-flattened Er3+-doped fibre amplifiers for WDM systems. Electron. Lett. 34(15), 1513–1514 (1998b)

    Article  Google Scholar 

  • Othman, M.A., et al.: Erbium doped fiber amplifier (EDFA) for C-band optical communication system. Int. J. Eng. Technol. IJET-IJENS 12(4), 48–50 (2012)

    Google Scholar 

  • Pal, M., Paul, M.C., Dhar, A., Pal, A., Sen, R., Dasgupta, K., Bhadra, S.K.: Investigation of the Optical Gain and Noise Figure for Multichannel Amplification in EDFA Under Optimized Pump Condition, pp. 407–412. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Qian, L.: Experiment on erbium-doped fiber amplifiers. Advanced Labs for Special Topics in Photonics (ECE 1640H). University of Toronto, pp. 1–36 (1998)

  • Qiao, L., Solhein, A., Bu, Q., Luo, Y., Fu, C., Zhang, W., Le, M.: Erbium doped fiber amplifier with passive temperature compensation. In: Optical Fiber Communication Conference 2017. Mac (2017)

  • Sakamoto, T., et al.: Flat-gain operation of 1580 nm-band EDFA with gain variation of 0.2 dB over 1579–1592 nm. Electron. Lett. 34(20), 1959–1961 (1998)

    Article  Google Scholar 

  • Saleh, A.A.M., Jopson, R.M., Evankow, J.D., Aspell, J.: Modeling of gain in erbium-doped fiber amplifiers. IEEE Photon. Technol. Lett. 2, 714–717 (1990)

    Article  ADS  Google Scholar 

  • Semmalar, S., Devi, P.: Optimized gain EDFA of different lengths with an influence of pump power. In: 2011 International Conference on Electronics, Communication and Computing Technologies. IEEE (2011)

  • Shi, Y., Feng, H., Zeng, Z.: A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy. Sensors 15(9), 21957–21970 (2015)

    Article  Google Scholar 

  • Sindhi, U.J., et al.: Gain optimization of EDFA for WDM system. In: 2017 International Conference on Communication and Signal Processing (ICCSP). IEEE (2017)

  • Swain, S.K.: Analysis of WDM network based on EDFA pumping and dispersion compensation using optisystem. Dissertation (2012)

  • Thyagarajan, K.S., Ghatak, A.: Fiber Optic Essentials, vol. 10. Wiley, Hoboken (2007)

    Book  Google Scholar 

  • Yu, X., et al.: Phase-sensitive optical time domain reflectometer for distributed fence-perimeter intrusion detection. In: AOPC 2015, Optical Fiber Sensors and Applications, Vol. 9679. International Society for Optics and Photonics (2015)

  • Zhou, P., et al.: High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser. Opt. Express 26(13), 16689–16707 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Malakzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakzadeh, A., Pashaie, R. & Mansoursamaei, M. Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Opt Quant Electron 52, 75 (2020). https://doi.org/10.1007/s11082-019-2186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2186-0

Keywords

Navigation