Skip to main content
Log in

Performance Enhancement of Er–Yb: Co-doped Waveguide Amplifier Employing Backward Pumping in the Presence of Energy Transfer Upconversion

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Integrated photonics (IP) is an emerging technology in photonics in which optical waveguides (WGs) and devices are fabricated as an integrated structure onto the surface of a flat substrate. IP technology has the great potential for reshaping the high-speed optical communication, sensing, and imaging exploiting the benefits of miniaturization, low cost, and high efficiency. Erbium-doped waveguide technology has become a popular area of research as it is compatible with CMOS technology. This is largely due to the success of erbium-doped fiber amplifiers (EDFAs) in achieving high gain, high saturation power, and low noise figure (NF) in high-speed long-haul optical fiber links. In this paper, we report the performance enhancement of Er–Yb: co-doped waveguide amplifier (EYCDWA) for C-band (1530–1565 nm) employing backward pumping with a standard 980-nm pump in the presence of energy transfer upconversion (UC). The performance of EYCDWA is evaluated in terms of signal enhancement (relative gain), net internal gain (NIG), and NF using numerical simulations. The length of WG, ion densities of \(\hbox {Er}^{3+}\) and \(\hbox {Yb}^{3}\), and excess losses are adjusted to achieve record high NIG of 11 dB/cm and signal enhancement of 15.5 dB/cm at signal wavelength of 1530 nm. Also, NF values in the range of 4.9–5.1 dB are observed for C-band wavelengths for input signal power of − 15 dBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Demirtas, M.; Ay, F.: High-gain \(\text{ Er}^{3+}\): \(\text{ Al}_2\text{ O}_3\) on-chip waveguide amplifiers. IEEE J. Sel. Top. Quantum Electron. 26(5), 1–8 (2020)

    Article  Google Scholar 

  2. Deng, W.; Chen, L.; Zhang, H.; Wang, S.; Lu, Z.; Liu, S.; Yang, Z.: On-chip polarization-and frequency-division demultiplexing for multidimensional terahertz communication. Laser Photon. Rev. 16(10), 2200136 (2022)

    Article  Google Scholar 

  3. Bonneville, D.; Frankis, H.C.; Wang, R.; Bradley, J.D.-B.: Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Opt. Express 28(20), 30130–30140 (2020)

    Article  Google Scholar 

  4. Zhu, J.; Zhang, B.; Huang, Y.; Lv, Z.; Zhang, D.: Optical gain at 1.55 \(\mu \)m of Er(TMHD)\(_3\) complex doped polymer waveguides based on the intramolecular energy transfer effect. Opt. Express 31(4), 5242–5256 (2023)

    Article  Google Scholar 

  5. Zhou, J.; Liang, Y.; Liu, Z.; Chu, W.; Zhang, H.; Yin, D.; Fang, Z.: On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photon. Rev. 15(8), 2100030 (2021)

    Article  Google Scholar 

  6. Wang, C.; Zhang, M.; Chen, Y.; Wang, Y.; Lu, J.; Huang, X.; Wei, Y.: Synthesis and study of novel erbium-doped \(\text{ La}_2\text{ O}_3\)-\(\text{ Al}_2\text{ O}_3\) glasses for on-chip waveguide amplifier. J. Alloy. Compd. 899, 162915 (2022)

    Article  Google Scholar 

  7. Naraine, C.M.; Miller, J.W.; Frankis, H.C.; Hagan, D.E.; Bradley, J.D.B.: Subwavelength grating metamaterial waveguides functionalized with tellurium oxide cladding. Opt. Express 28(12), 18538–18547 (2020)

    Article  Google Scholar 

  8. Fan, W.; Zhang, B.; Wang, C.; Ying, L.; Zhang, D.: Demonstration of optical gain at 1550 nm in an \(\text{ Er}^{3+}\)-\(\text{ Yb}^{3+}\) co-doped phosphate planar waveguide under commercial and convenient LED pumping. Opt. Express 29(8), 11372–11385 (2021)

    Article  Google Scholar 

  9. Luo, Q.; Yang, C.; Hao, Z.; Zhang, R.; Xu, J.: On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett. 19(6), 060008 (2021)

    Article  Google Scholar 

  10. Bradley, J.D.B.; Pollnau, M.: Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon. Rev. 5(3), 368–403 (2011)

    Article  Google Scholar 

  11. Cai, M.; Wu, K.; Xiang, J.; Xiao, Z.; Li, T.; Li, C.; Chen, J.: Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Top. Quantum Electron. 28(3), 1–8 (2021)

    Article  Google Scholar 

  12. Valle, G.D.; Taccheo, S.; Sorbello, G.; Cianci, E.; Foglietti, V.; Laporta, R.: Compact high gain erbium–ytterbium doped waveguide amplifier fabricated by Ag–Na ion exchange. Electron. Lett. 42(11), 632–633 (2006)

    Article  Google Scholar 

  13. Liang, Y.; Zhou, J.; Liu, Z.; Zhang, H.; Fang, Z.; Zhou, Y.; Yin, D.: A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics 11(5), 1033–1040 (2022)

    Article  Google Scholar 

  14. Benedicto, D.; Valles, J.A.: Ring-type erbium-doped antiresonant reflecting optical waveguide amplifier analysis and design. IEEE Photon. Technol. Lett. 30(23), 2060–2063 (2018)

    Article  Google Scholar 

  15. Sun, T.; Fu, Y.; Zhang, X.; Yan, J.; Wang, F.; Zhang, D.: Gain enhancement of polymer waveguide amplifier based on \(\text{ NaYF}_4\): \(\text{ Er}^{3+}\), \(\text{ Yb}^{3+}\) nanocrystals using backward pump scheme. Opt. Commun. 488, 126723 (2021)

    Article  Google Scholar 

  16. Federighi, M.; Pasquale, F.D.: The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high \(\text{ Er}^{3+}\)/ \(\text{ Yb}^{3+}\) concentrations. IEEE Photon. Technol. Lett. 7(3), 303–305 (1995)

    Article  Google Scholar 

  17. Barbier, D.; Bruno, P.; Cassagnettes, C.; Trouillon, M.; Hyde, R.L.; Kevorkian, A.; Delavaux, J.M.P.: “Net gain of 27 dB with a 8.6-cm-long Er/Yb-doped glass-planar-amplifier. In Optical Fiber Communication Conference and Exhibition, pp. 45–46 (1998)

  18. Wetter, N.U.; Silva, D.S.D.; Kassab, L.R.P.; Jimenez-Villar, E.: Improving performance in ytterbium–erbium doped waveguide amplifiers through scattering by large silicon nanostructures. J. Alloys Compd. 794, 120–126 (2019)

    Article  Google Scholar 

  19. Mirhosseini, S.; Kazemikhah, P.; Aghababa, H.; Kolahdouz, M.: Fabrication of an erbium–ytterbium-doped waveguide amplifier at communication wavelengths for integrated optics applications. SN Appl. Sci. 5(1), 39–50 (2023)

    Article  Google Scholar 

  20. Benedicto, D.; Dias, A.; Martin, J.C.; Valles, J.A.; Solis, J.: Characterization of multicore integrated active waveguides written in an \(\text{ Er}^{3+}\)/\(\text{ Yb}^{3+}\) codoped phosphate glass. J. Lightwave Technol. 39(15), 5061–5068 (2021)

    Article  Google Scholar 

  21. Mirza, J.; Ghafoor, S.; Kousar, A.; Kanwal, B.; Qureshi, K.K.: Design of a continuous-wave ytterbium-doped tunable fiber laser pump for thulium-doped fiber amplifiers. Arab. J. Sci. Eng. 47(3), 3541–3549 (2022)

    Article  Google Scholar 

  22. Alharbi, A.G.; Kanwal, F.; Ghafoor, S.; Habib, N.; Kanwal, B.; Atieh, A.; Kousar, T.; Mirza, J.: Performance optimization of holmium doped fiber amplifiers for optical communication applications in 2–2.15 \(\mu \)m wavelength range. Photonics 9(4), 245–257 (2022)

    Article  Google Scholar 

  23. Mirza, J.; Ghafoor, S.; Habib, N.; Kanwal, F.; Qureshi, K.K.: Performance evaluation of praseodymium doped fiber amplifiers. Opt. Rev. 28(6), 611–618 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ghafoor.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, J., Raza, A., Atieh, A. et al. Performance Enhancement of Er–Yb: Co-doped Waveguide Amplifier Employing Backward Pumping in the Presence of Energy Transfer Upconversion. Arab J Sci Eng 49, 6707–6713 (2024). https://doi.org/10.1007/s13369-023-08440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08440-1

Keywords

Navigation