Skip to main content
Log in

Global robust stabilization for cascaded systems with dynamic uncertainties and asymmetric time-varying constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates an adaptive output feedback control problem for a non-holonomic system with integral input-to-state stable inverse dynamics and output constraints. A tan-type barrier Lyapunov function is utilized to handle asymmetric time-varying output constraints, and the full-order observer is constructed to estimate the unmeasurable state. The dynamic uncertainty is eliminated by changing the supply rate of the integral input-to-state stability. It is demonstrated that the closed-loop system is asymptotically stable, and the output does not violate the asymmetric time-varying constraints under this control scheme. A simulation example validates the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that all data analyzed during this paper are included in this article.

References

  1. Manav, A.C., Lazoglu, I.: A novel cascade path planning algorithm for autonomous truck-trailer parking. IEEE Trans. Intell. Transp. Syst. 23(7), 6821–6835 (2021)

    Article  Google Scholar 

  2. Zhang, Y.B., Wang, D., Peng, Z.H., Li, T., Liu, L.: Event-triggered ISS-modular neural network control for containment maneuvering of nonlinear strict-feedback multi-agent systems. Neurocomputing 377(11), 314–324 (2020)

    Article  Google Scholar 

  3. Ding, S.H., Li, S.H., Li, Q.: Global uniform asymptotical stability of a class of nonlinear cascaded systems with application to a nonholonomic wheeled mobile robot. Int. J. Syst. Sci. 41(11), 1301–1312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z.Y., Huang, J.: A Lyapunov’s direct method for the global robust stabilization of nonlinear cascaded systems. Automatica 44(3), 745–752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, S.H., Li, S.H., Zheng, W.X.: Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica 48(10), 2597–2606 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Imura, J.I., Sugie, T., Yoshikawa, T.: Global robust stabilization of nonlinear cascaded systems. IEEE Trans. Autom. Control 39(5), 1084–1089 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lendek, Z., Babuška, R., De Schutter, B.: Stability of cascaded fuzzy systems and observers. IEEE Trans. Fuzzy Syst. 17(3), 641–653 (2009)

    Article  Google Scholar 

  8. Jankovic, M., Sepulchre, R., Kokotovic, P.V.: Constructive Lyapunov stabilization of nonlinear cascade systems. IEEE Trans. Autom. Control 41(12), 1723–1735 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mazenc, F., Sepulchre, R., Jankovic, M.: Lyapunov functions for stable cascades and applications to global stabilization. IEEE Trans. Autom. Control 44(9), 1795–1800 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, W., Qian, C.J.: Adaptive regulation of cascade systems with nonlinear parameterization. Int. J. Robust Nonlinear Control 12(12), 1093–1108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Z.P., Teel, A.R., Praly, L.: Small-gain theorem for ISS systems and applications. Math. Control Signal Syst. 7(2), 95–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sontag, E.D., Wang, Y.: New characterizations of input to state stability. IEEE Trans. Autom. Control 41(9), 1283–1294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z.Y., Huang, J.: Global robust stabilization of cascaded polynomial systems. Syst. Control Lett. 47(5), 445–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, Z.P., Marcels, I.M.Y.: A small-gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Trans. Autom. Control 42(3), 292–308 (1997)

    Article  MathSciNet  Google Scholar 

  15. Lin, W., Gong, Q.: A remark on partial-state feedback stabilization of cascade systems using small gain theorem. IEEE Trans. Autom. Control 48(3), 497–500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, Z.P., Mareels, I.M.Y., Wang, Y.: A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica 32(8), 1211–1215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Teel, A.R.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Autom. Control 43(7), 960–964 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ahn, C.K.: Robust stability of recurrent neural networks with ISS learning algorithm. Nonlinear Dyn. 65(4), 413–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sontag, E.D.: Comments on integral variants of ISS. Syst. Control Lett. 34(1–2), 93–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, Z.P., Mareels, I., Hill, D.J., Huang, J.: A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS. IEEE Trans. Autom. Control 49(4), 549–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ito, H.: State-dependent scaling problems and stability of interconnected iISS and ISS systems. IEEE Trans. Autom. Control 51(10), 1626–1643 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ito, H., Jiang, Z.P.: Necessary and sufficient small gain conditions for integral input-to-state stable systems: a Lyapunov perspective. IEEE Trans. Autom. Control 54(10), 2389–2404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu, X., Wu, Y.Q., Xie, X.J.: Reduced-order observer-based output feedback regulation for a class of nonlinear systems with iISS inverse dynamics. Int. J. Control 85(12), 1942–1951 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burger, M., Guay, M.: Robust constraint satisfaction for continuous-time nonlinear systems in strict feedback form. IEEE Trans. Autom. Control 55(11), 2597–2601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fuentes-Aguilar, R.Q., Chairez, I.: Adaptive tracking control of state constraint systems based on differential neural networks: a barrier Lyapunov function approach. IEEE Trans. Neural Netw. Learn. Syst. 31(12), 5390–5401 (2020)

    Article  MathSciNet  Google Scholar 

  28. Liu, Y.J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, L., Wang, Q.: Prescribed performance-barrier Lyapunov function for the adaptive control of unknown pure-feedback systems with full-state constraints. Nonlinear Dyn. 95(3), 2443–2459 (2019)

    Article  MATH  Google Scholar 

  30. Jin, X., Xu, J.X.: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica 49(8), 2508–2516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, D.J., Li, J., Li, S.: Adaptive control of nonlinear systems with full state constraints using integral barrier Lyapunov functionals. Neurocomputing 186, 90–96 (2016)

    Article  Google Scholar 

  33. Angeli, D., Sontag, E.D., Wang, Y.: A characterization of integral input-to-state stability. IEEE Trans. Autom. Control 45(6), 1082–1097 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, J.B., Zhao, Y.: Global robust stabilization for nonholonomic systems with dynamic uncertainties. J. Frankl. Inst. 357(3), 1357–1377 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, W., Pongvuthithum, R.: Global stabilization of cascade systems by \(C^{0}\) partial-state feedback. IEEE Trans. Autom. Control 47(8), 1356–1362 (2002)

    Article  MATH  Google Scholar 

  36. Jiang, Z.P.: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 36(2), 189–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gao, F.Z., Wu, Y.Q., Huang, J.C., Liu, Y.H.: Output feedback stabilization within prescribed finite time of asymmetric time-varying constrained nonholonomic systems. Int. J. Robust Nonlinear Conrol 31(2), 427–446 (2021)

    Article  MathSciNet  Google Scholar 

  38. Tee, K.P., Ren, B.B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xi, Z.R., Feng, G., Jiang, Z.P., Cheng, D.Z.: Output feedback exponential stabilization of uncertain chained systems. J. Frankl. Inst. 344(1), 36–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62073187 and 62003148), and the Major Scientific and Technological Innovation Project in Shandong Province (2019JZZY011111).

Funding

This work was supported in part by the National Natural Science Foundation of China (62073187 and 62003148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, F., Wu, K. & Wu, Y. Global robust stabilization for cascaded systems with dynamic uncertainties and asymmetric time-varying constraints. Nonlinear Dyn 111, 18969–18983 (2023). https://doi.org/10.1007/s11071-023-08867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08867-z

Keywords

Navigation